10 research outputs found

    Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis

    Get PDF
    The isolation and characterization of the phytoene synthase gene from the green microalga Chlorella zofingiensis (CzPSY), involved in the first step of the carotenoids biosynthetic pathway, have been performed. CzPSY gene encodes a polypeptide of 420 amino acids. A single copy of CzPSY has been found in C. zofingiensis by Southern blot analysis. Heterologous genetic complementation in Escherichia coli showed the ability of the predicted protein to catalyze the condensation of two molecules of geranylgeranyl pyrophosphate (GGPP) to form phytoene. Phylogenetic analysis has shown that the deduced protein forms a cluster with the rest of the phytoene synthases (PSY) of the chlorophycean microalgae studied, being very closely related to PSY of plants. This new isolated gene has been adequately inserted in a vector and expressed in Chlamydomonas reinhardtii. The overexpression of CzPSY in C. reinhardtii, by nuclear transformation, has led to an increase in the corresponding CzPSY transcript level as well as in the content of the carotenoids violaxanthin and lutein which were 2.0- and 2.2-fold higher than in untransformed cells. This is an example of manipulation of the carotenogenic pathway in eukaryotic microalgae, which can open up the possibility of enhancing the productivity of commercial carotenoids by molecular engineering

    Deletion of nine carboxy-terminal residues of the Rubisco small subunit decreases thermal stability but does not eliminate function

    Get PDF
    AbstractA recent X-ray crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from the green alga Chlamydomonas reinhardtii lacks 13 carboxy-terminal residues of the small subunit. To determine the importance of this divergent region, a non-sense mutation was created that removes nine residues. This engineered gene was transformed into a Chlamydomonas strain that lacks the small-subunit gene family. The resulting holoenzyme has a normal CO2/O2 specificity but decreased carboxylation Vmax. Whereas wild-type enzyme retained most of its carboxylase activity after a 10-min incubation at 55°C, the mutant enzyme was inactivated. Thus, although disordered or divergent, the carboxy terminus is required for maximal activity and stability

    Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization

    No full text
    Light is the source of energy for photosynthetic organisms; when in excess, however, it also drives the formation of reactive oxygen species and, consequently, photoinhibition. Plants and algae have evolved mechanisms to regulate light harvesting efficiency in response to variable light intensity so as to avoid oxidative damage. Nonphotochemical quenching (NPQ) consists of the rapid dissipation of excess excitation energy as heat. Although widespread among oxygenic photosynthetic organisms, NPQ shows important differences in its machinery. In land plants, such as Arabidopsis thaliana, NPQ depends on the presence of PSBS, whereas in the green alga Chlamydomonas reinhardtii it requires a different protein called LHCSR. In this work, we show that both proteins are present in the moss Physcomitrella patens. By generating KO mutants lacking PSBS and/or LHCSR, we also demonstrate that both gene products are active in NPQ. Plants lacking both proteins are more susceptible to high light stress than WT, implying that they are active in photoprotection. These results suggest that NPQ is a fundamental mechanism for survival in excess light and that upon land colonization, photosynthetic organisms evolved a unique mechanism for excess energy dissipation before losing the ancestral one found in algae
    corecore