256 research outputs found

    Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Get PDF
    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel

    Corynebacterium jeikeium bacteremia in a hemodialyzed patient

    Get PDF
    SummaryCorynebacterium jeikeium, frequently encountered in clinical specimens, is part of the normal skin flora. Nevertheless, a few cases of C. jeikeium bacteremia followed by severe clinical manifestations have been reported. C. jeikeium has been reported to cause endocarditis, septicemia, meningitis, pneumonia and osteomyelitis, along with soft tissue and trauma infections. Herein we describe a case of C. jeikeium bacteremia in Greece. The isolation of a coryneform bacterium from a clinical specimen should not immediately be considered a superinfection by the skin flora. Clinical and laboratory investigations are essential in order to evaluate such cases before applying appropriate treatment. On the other hand, the association of coryneform bacteria and disease should be critically investigated, with a thorough identification of the strain, ideally beyond the classical methods, at a specialized center

    Retrieving wind statistics from average spectrum of continuous-wave lidar

    Get PDF
    The aim of this study is to experimentally demonstrate that the time-average Doppler spectrum of a continuous-wave (cw) lidar is proportional to the probability density function of the line-of-sight velocities. This would open the possibility of using cw lidars for the determination of the second-order atmospheric turbulence statistics. An atmospheric field campaign and a wind tunnel experiment are carried out to show that the use of an average Doppler spectrum instead of a time series of velocities determined from individual Doppler spectra significantly reduces the differences with the standard deviation measured using ordinary anemometers, such as ultra-sonic anemometers or hotwires. The proposed method essentially removes the spatial averaging effect intrinsic to the cw lidar systems

    Next Generation Flexible and Cognitive Heterogeneous Optical Networks:Supporting the Evolution to the Future Internet

    Get PDF
    Optical networking is the cornerstone of the Future Internet as it provides the physical infrastructure of the core backbone networks. Recent developments have enabled much better quality of service/experience for the end users, enabled through the much higher capacities that can be supported. Furthermore, optical networking developments facilitate the reduction of complexity of operations at the IP layer and therefore reduce the latency of the connections and the expenditures to deploy and operate the networks. New research directions in optical networking promise to further advance the capabilities of the Future Internet. In this book chapter, we highlight the latest activities of the optical networking community and in particular what has been the focus of EU funded research. The concepts of flexible and cognitive optical networks are introduced and their key expected benefits are highlighted. The overall framework envisioned for the future cognitive flexible optical networks are introduced and recent developments are presented

    Enheduanna – A Manifesto of Falling: first demonstration of a live brain-computer cinema performance with multi-brain BCI interaction for one performer and two audience members

    Get PDF
    The new commercial-grade Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) have led to a phenomenal development of applications across health, entertainment and the arts, while an increasing interest in multi-brain interaction has emerged. In the arts, there is already a number of works that involve the interaction of more than one participants with the use of EEG-based BCIs. However, the field of live brain-computer cinema and mixed-media performances is rather new, compared to installations and music performances that involve multi-brain BCIs. In this context, we present the particular challenges involved. We discuss Enheduanna – A Manifesto of Falling, the first demonstration of a live brain-computer cinema performance that enables the real-time brain-activity interaction of one performer and two audience members; and we take a cognitive perspective on the implementation of a new passive multi-brain EEG-based BCI system to realise our creative concept. This article also presents the preliminary results and future work

    Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells

    Get PDF
    The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses
    corecore