40 research outputs found

    Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles

    Full text link
    [EN] Lignocellulosic wood flour particles with three different sizes were used to reinforce Solanyl® type bioplastic in three compositions (10, 20, and 30 wt.%) and further processed by melt-extrusion and injection molding to simulate industrial conditions. The wood flour particles were morphologically and granulometric analyzed to evaluate their use as reinforcing filler. The Fuller method on wood flour particles was successfully applied and the obtained results were subsequently corroborated by the mechanical characterization. The rheological studies allowed observing how the viscosity was affected by the addition of wood flour and to recover information about the processing conditions of the biocomposites. Results suggest that all particles can be employed in extrusion processes (shear rate less than 1000 s¿1 ). However, under injection molding conditions, biocomposites with high percentages of wood flour or excessively large particles may cause an increase in defective injected-parts due to obstruction of the gate in the mold. From a processing point of view and based on the biocomposites performance, the best combination resulted in Solanyl® type biopolymer reinforced with wood flour particles loaded up to 20 wt.% of small and medium particles size. The obtained biocomposites are of interest for injected molding parts for several industrial applications.Parres, F.; Peydro, MA.; Juárez Varón, D.; Arrieta, MP.; Aldas, M. (2020). Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles. Polymers. 12(12):1-24. https://doi.org/10.3390/polym12122974124121

    Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic

    Full text link
    "This is the peer reviewed version of the following article: Aldas, M., J. M. Ferri, J. Lopez-Martinez, M. D. Samper, and M. P. Arrieta. 2019. Effect of Pine Resin Derivatives on the Structural, Thermal, and Mechanical Properties of Mater-Bi Type Bioplastic. Journal of Applied Polymer Science 137 (4). Wiley: 48236. doi:10.1002/app.48236, which has been published in final form at https://doi.org/10.1002/app.48236. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] The effect of three additives derived from pine resin, namely, gum rosin (GR) and two pentaerythritol ester of GR, Lurefor (LF) and Unik Tack (UT), in 5, 10, and 15 wt %, on the properties of Mater-Bi, based on plasticized starch, poly(butylene adipate-co-terephthalate), and poly(epsilon-caprolactone) (PCL), obtained by injection molding processes, was studied. The mechanical, microstructural, and thermal properties were evaluated. LF had a cohesive behavior with the components of Mater-Bi, increasing the toughness of the material up to 250% accompanied by an increase of tensile modulus and tensile strength. UT had an intermediate behavior, conferring cohesive and plasticizing effects, allowing an increase of 105% in impact resistance. GR had a more marked plasticizing effect. This allows processing temperatures of about 50 degrees C lower than those used for neat Mater-Bi. In addition, an increase of the elongation at break, toughness, and impact resistance in 370, 480, and 250%, respectively, was achieved.This work was supported by the Spanish Ministry of Economy and Competitiveness, PROMADEPCOL (MAT2017-84909-C2-2-R). M. P. Arrieta thanks Complutense University of Madrid for "Ayudas para la contratacion de personal postdoctoral en formacion en docencia e investigacion en departamentos de la UCM."Aldas-Carrasco, MF.; Ferri, JM.; López-Martínez, J.; Samper, M.; Arrieta, MP. (2020). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater-Bi type bioplastic. Journal of Applied Polymer Science. 137(4):1-14. https://doi.org/10.1002/app.48236S1141374Plastics Europe Plastics – the Facts 2018. An analysis of European plastics production demand and waste data” [Online]. Available:https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf(accessed on July 1 2019).Arrieta, M. P., Peponi, L., López, D., & Fernández-García, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 111, 317-328. doi:10.1016/j.indcrop.2017.10.042Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. doi:10.1016/j.carbpol.2016.02.035Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008Elfehri Borchani, K., Carrot, C., & Jaziri, M. (2015). Biocomposites of Alfa fibers dispersed in the Mater-Bi® type bioplastic: Morphology, mechanical and thermal properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. doi:10.1016/j.compositesa.2015.08.023Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. doi:10.1016/j.polymdegradstab.2016.02.027Fabra, M. J., López-Rubio, A., Cabedo, L., & Lagaron, J. M. (2016). Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design. Journal of Colloid and Interface Science, 483, 84-92. doi:10.1016/j.jcis.2016.08.021Makaremi, M., Pasbakhsh, P., Cavallaro, G., Lazzara, G., Aw, Y. K., Lee, S. M., & Milioto, S. (2017). Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Applied Materials & Interfaces, 9(20), 17476-17488. doi:10.1021/acsami.7b04297Niu, X., Liu, Y., Song, Y., Han, J., & Pan, H. (2018). Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydrate Polymers, 183, 102-109. doi:10.1016/j.carbpol.2017.11.079Mujica‐Garcia A.;Sonseca A.;Arrieta M. P.;Yusef M.;López D.;Gimenez E.;Kenny J. M.;Peponi L.In Tiwari A. Wang R. Wei B.; Advanced Surface Engineering Materials; Wiley: Massachussets USA 2016.Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Trovatti, E., Carvalho, A. J. F., & Gandini, A. (2014). A new approach to blending starch with natural rubber. Polymer International, 64(5), 605-610. doi:10.1002/pi.4808Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8Azevedo, V. M., Borges, S. V., Marconcini, J. M., Yoshida, M. I., Neto, A. R. S., Pereira, T. C., & Pereira, C. F. G. (2017). Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, 157, 971-980. doi:10.1016/j.carbpol.2016.10.046Sessini, V., Raquez, J.-M., Lourdin, D., Maigret, J.-E., Kenny, J. M., Dubois, P., & Peponi, L. (2017). Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilized Nanocomposites. Macromolecular Chemistry and Physics, 218(24), 1700388. doi:10.1002/macp.201700388Correa, A. C., Carmona, V. B., Simão, J. A., Capparelli Mattoso, L. H., & Marconcini, J. M. (2017). Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties. Carbohydrate Polymers, 167, 177-184. doi:10.1016/j.carbpol.2017.03.051Lendvai, L., Apostolov, A., & Karger-Kocsis, J. (2017). Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 173, 566-572. doi:10.1016/j.carbpol.2017.05.100Mikus, P.-Y., Alix, S., Soulestin, J., Lacrampe, M. F., Krawczak, P., Coqueret, X., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450-457. doi:10.1016/j.carbpol.2014.06.087Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513Rodríguez-García, A., Martín, J. A., López, R., Sanz, A., & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. doi:10.1016/j.indcrop.2016.03.033Sharma, L., & Singh, C. (2016). Composite film developed from the blends of sesame protein isolate and gum rosin and their properties thereof. Polymer Composites, 39(5), 1480-1487. doi:10.1002/pc.24088Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557Yu, C., Chen, C., Gong, Q., & Zhang, F.-A. (2012). Preparation of polymer microspheres with a rosin moiety from rosin ester, styrene and divinylbenzene. Polymer International, 61(11), 1619-1626. doi:10.1002/pi.4249Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296dCavallaro, G., Lazzara, G., Milioto, S., Parisi, F., & Ruisi, F. (2017). Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose, 24(8), 3367-3376. doi:10.1007/s10570-017-1369-8Marina P. Arrieta, Juan López, Santiago Ferrándiz, & Mercedes A. Peltzer. (2015). EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, (1065), 719-725. doi:10.17660/actahortic.2015.1065.90Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polymer Letters, 6(4), 293-298. doi:10.3144/expresspolymlett.2012.32International Standards Organization ISO 527‐1:2012 ‐ Plastics ‐ Determination of tensile properties ‐ Part 1: General 2012.Sessini, V., Raquez, J.-M., Lo Re, G., Mincheva, R., Kenny, J. M., Dubois, P., & Peponi, L. (2016). Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Applied Materials & Interfaces, 8(30), 19197-19201. doi:10.1021/acsami.6b06618Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886International Standards Organization ISO 178:2010 ‐ Plastics ‐ Determination of flexural propertie 2010.International Standards Organization ISO 179:2010 ‐ Plastics ‐ Determination of charpy impact properties 2010.International Standards Organization ISO 868:2003 ‐ Plastics and ebonite ‐ Determination of indentation hardness by means of a durometer (Shore hardness) 2003.Jost, V. (2018). Packaging related properties of commercially available biopolymers – An overview of the status quo. Express Polymer Letters, 12(5), 429-435. doi:10.3144/expresspolymlett.2018.36International Standards Organization ISO 75‐1:2013 ‐ Plastics ‐ Determination of temperature of deflection under load ‐ Part 1: General test method 2013.Mok, S. L., Kwong, C. K., & Lau, W. S. (2001). A Hybrid Neural Network and Genetic Algorithm Approach to the Determination of Initial Process Parameters for Injection Moulding. The International Journal of Advanced Manufacturing Technology, 18(6), 404-409. doi:10.1007/s001700170050Al-Itry, R., Lamnawar, K., & Maazouz, A. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028Bastioli, C., Cerutti, A., Guanella, I., Romano, G. C., & Tosin, M. (1995). Physical state and biodegradation behavior of starch-polycaprolactone systems. Journal of Environmental Polymer Degradation, 3(2), 81-95. doi:10.1007/bf02067484Esmaeili, M., Pircheraghi, G., & Bagheri, R. (2017). Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. Polymer International, 66(6), 809-819. doi:10.1002/pi.5319Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Journal of Materials Science: Materials in Medicine, 14(2), 127-135. doi:10.1023/a:1022015712170Khan, G., Yadav, S. K., Patel, R. R., Kumar, N., Bansal, M., & Mishra, B. (2017). Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Development, optimization and its clinical implications. International Journal of Biological Macromolecules, 103, 1311-1326. doi:10.1016/j.ijbiomac.2017.05.161Arrieta, M. P., & Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. doi:10.1016/j.eurpolymj.2017.02.028Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. K. (2016). Synthesis and characterization of novel reduced Gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. doi:10.1007/s00289-016-1877-ySingh, V., Joshi, S., & Malviya, T. (2018). Carboxymethyl cellulose-rosin gum hybrid nanoparticles: An efficient drug carrier. International Journal of Biological Macromolecules, 112, 390-398. doi:10.1016/j.ijbiomac.2018.01.184Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019Muthuraj, R., Misra, M., & Mohanty, A. K. (2015). Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. Journal of Applied Polymer Science, 132(27), n/a-n/a. doi:10.1002/app.42189Signori, F., Coltelli, M.-B., & Bronco, S. (2009). Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polymer Degradation and Stability, 94(1), 74-82. doi:10.1016/j.polymdegradstab.2008.10.004Navarro-Baena, I., Arrieta, M. P., Sonseca, A., Torre, L., López, D., Giménez, E., … Peponi, L. (2015). Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: Plastificant and reinforcement effects. Polymer Degradation and Stability, 121, 171-179. doi:10.1016/j.polymdegradstab.2015.09.002Salgado, C., Arrieta, M. P., Peponi, L., Fernández-García, M., & López, D. (2016). Influence of Poly(ε-caprolactone) Molecular Weight and Coumarin Amount on Photo-Responsive Polyurethane Properties. Macromolecular Materials and Engineering, 302(4), 1600515. doi:10.1002/mame.201600515Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Cerruti, P., Santagata, G., Gomez d’Ayala, G., Ambrogi, V., Carfagna, C., Malinconico, M., & Persico, P. (2011). Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, 96(5), 839-846. doi:10.1016/j.polymdegradstab.2011.02.00

    Clash of Titans: A MUSE dynamical study of the extreme cluster merger SPT-CL J0307-6225

    Get PDF
    We present MUSE spectroscopy, Megacam imaging, and Chandra X-ray emission for SPT-CL J0307-6225, a z = 0.58 major merging galaxy cluster with a large BCG-SZ centroid separation and a highly disturbed X-ray morphology. The galaxy density distribution shows two main overdensities with separations of 0.144 and 0.017 arcmin to their respective BCGs. We characterize the central regions of the two colliding structures, namely 0307-6225N and 0307-6225S, finding velocity derived masses of M200, N = 2.44 ± 1.41 × 1014M⊙ and M200, S = 3.16 ± 1.88 × 1014M⊙, with a line-of-sight velocity difference of |Δv| = 342 km s-1. The total dynamically derived mass is consistent with the SZ derived mass of 7.63 h70-1 ± 1.36 × 1014M⊙. We model the merger using the Monte Carlo Merger Analysis Code, estimating a merging angle of 36+14-12 ° with respect to the plane of the sky. Comparing with simulations of a merging system with a mass ratio of 1:3, we find that the best scenario is that of an ongoing merger that began 0.96+0.31-0.18 Gyr ago. We also characterize the galaxy population using Hδand [O ii] λ3727 Å lines. We find that most of the emission-line galaxies belong to 0307-6225S, close to the X-ray peak position with a third of them corresponding to red-cluster sequence galaxies, and the rest to blue galaxies with velocities consistent with recent periods of accretion. Moreover, we suggest that 0307-6225S suffered a previous merger, evidenced through the two equally bright BCGs at the centre with a velocity difference of ∼674 km s-1

    Acceptance and Use of E-Learning Based on Cloud Computing: The Role of Consumer Innovativeness

    Get PDF
    Cloud computing and E-learning are the inevitable trend of computational science in general, and information systems and technologies in specific.However, there are not many studies on the adoption of cloud-based E-learning systems. Moreover, while there are many papers on information system adoption as well as customer innovativeness, the innovativeness and adoption in the same model seems to be rare in the literature. The study combines the extended Unified Theory of Acceptance and Use of Technology (UTAUT2) and consumer innovativeness on the adoption of E-learning systems based on cloud computing. A survey was conducted among 282 cloud-based E-learning participants and analyzed by structural equation modeling (SEM). The findings indicate that the adoption of cloud-based E-learning is influenced by performance expectancy, social influence, hedonic motivation, and habit. Interestingly, although innovativeness is not significant to use intention, it has a positive effect on E-learning usage which is relatively new in Vietnam

    Gum rosin as a size control agent of poly(Butylene adipate-co-terephthalate) (pbat) domains to increase the toughness of packaging formulations based on polylactic acid (pla)

    No full text
    Gum rosin (GR) was used as a natural additive to improve the compatibility between polylactic acid, PLA, and poly(butylene adipate-co-terephthalate, PBAT, blended with 20 wt.% of PBAT (PLA/PBAT). The PBAT was used as a soft component to increase the ductility of PLA and its fracture toughness. The coalescence of the PBAT domains was possible due to the plasticization effect of the GR component. These domains contributed to increasing the toughness of the final material due to the variation and control of the PBAT domains’ size and consequently, reducing the stress concentration points. The GR was used in contents of 5, 10, 15, and 20 phr. Consequently, the flexural properties were improved and the impact resistance increased up to 80% in PLA/PBAT_15GR with respect to the PLA/PBAT formulation. Field emission scanning electron microscope (FESEM) images allowed observing that the size of PBAT domains of 2–3 µm was optimal to reduce the impact stress. Differential scanning calorimetry (DSC) analysis showed a reduction of up to 8C on the PLA melting temperature and up to 5.3C of the PLA glass transition temperature in the PLA/PBAT_20GR formulation, which indicates an improvement in the processability of PLA. Finally, transparent films with improved oxygen barrier performance and increased hydrophobicity were obtained suggesting the potential interest of these blends for the food packaging industry.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), project: PROMADEPCOL (MAT2017-84909-C2-2-R

    Combined effect of linseed oil and gum rosin as natural additives for PVC

    Full text link
    Polyvinyl chloride (PVC) was plasticized with epoxidized linseed oil (ELO) an further added with triethylene glycol ester of gum rosin (TEGR) as natural viscosity increasing agent. Although, the addition of both additives resulted in some colour changes, since TEGR induced red tone and ELO produced an amber tonality, all formulations showed high brightness and transparency. FTIR was used to study the changes in the plastisol chemical structures due to the addition of both natural additives. The microstructure of plastisols, studied by SEM observations, further confirmed that ELO and TEGR presented good compatibility with PVC resin, particularly when a mixture of ELO and TEGR was used. Therefore, changing the proportion of both natural additives allows designing tunable plastisols employing renewable materials. (C) 2017 Elsevier B.V. All rights reserved.Authors thank United Resins, Producao de Resinas S.A(Portugal) who kindle provided TEGR. M.P. Arrieta is recipient of a Juan de la Cierva contract (FJCI-2014-20630) from the Spanish Ministry of Economy and Competitiveness.Arrieta, MP.; Samper Madrigal, MD.; Jiménez-López M.; Aldas-Carrasco, MF.; López-Martínez, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products. 99:196-204. https://doi.org/10.1016/j.indcrop.2017.02.009S1962049
    corecore