83 research outputs found

    Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    Get PDF
    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis

    Effective QCD Partition Function in Sectors with Non-Zero Topological Charge and Itzykson-Zuber Type Integral

    Full text link
    It was conjectured by Jackson et.al. that the finite volume effective partition function of QCD with the topological charge MNM-N coincides with the Itzyskon-Zuber type integral for M×NM\times N rectangular matrices. In the present article we give a proof of this conjecture, in which the original Itzykson-Zuber integral is utilized.Comment: 7pages, LaTeX2

    Resonance Raman scattering studies in Br-2-adsorbed double-wall carbon nanotubes

    Get PDF
    ArticlePhysical Review B. 73(23):235413 (2006)journal articl

    Conductance Fluctuations in Disordered Wires with Perfectly Conducting Channels

    Full text link
    We study conductance fluctuations in disordered quantum wires with unitary symmetry focusing on the case in which the number of conducting channels in one propagating direction is not equal to that in the opposite direction. We consider disordered wires with N+mN+m left-moving channels and NN right-moving channels. In this case, mm left-moving channels become perfectly conducting, and the dimensionless conductance gg for the left-moving channels behaves as gmg \to m in the long-wire limit. We obtain the variance of gg in the diffusive regime by using the Dorokhov-Mello-Pereyra-Kumar equation for transmission eigenvalues. It is shown that the universality of conductance fluctuations breaks down for m0m \neq 0 unless NN is very large.Comment: 6 pages, 2 figure

    Asymptotic behavior of the conductance in disordered wires with perfectly conducting channels

    Full text link
    We study the conductance of disordered wires with unitary symmetry focusing on the case in which mm perfectly conducting channels are present due to the channel-number imbalance between two-propagating directions. Using the exact solution of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation for transmission eigenvalues, we obtain the average and second moment of the conductance in the long-wire regime. For comparison, we employ the three-edge Chalker-Coddington model as the simplest example of channel-number-imbalanced systems with m=1m = 1, and obtain the average and second moment of the conductance by using a supersymmetry approach. We show that the result for the Chalker-Coddington model is identical to that obtained from the DMPK equation.Comment: 20 pages, 1 figur

    Character Expansions for the Orthogonal and Symplectic Groups

    Full text link
    Formulas for the expansion of arbitrary invariant group functions in terms of the characters for the Sp(2N), SO(2N+1), and SO(2N) groups are derived using a combinatorial method. The method is similar to one used by Balantekin to expand group functions over the characters of the U(N) group. All three expansions have been checked for all N by using them to calculate the known expansions of the generating function of the homogeneous symmetric functions. An expansion of the exponential of the traces of group elements, appearing in the finite-volume gauge field partition functions, is worked out for the orthogonal and symplectic groups.Comment: 20 pages, in REVTE

    Conductance Distribution in Disordered Quantum Wires with a Perfectly Conducting Channel

    Full text link
    We study the conductance of phase-coherent disordered quantum wires focusing on the case in which the number of conducting channels is imbalanced between two propagating directions. If the number of channels in one direction is by one greater than that in the opposite direction, one perfectly conducting channel without backscattering is stabilized regardless of wire length. Consequently, the dimensionless conductance does not vanish but converges to unity in the long-wire limit, indicating the absence of Anderson localization. To observe the influence of a perfectly conducting channel, we numerically obtain the distribution of conductance in both cases with and without a perfectly conducting channel. We show that the characteristic form of the distribution is notably modified in the presence of a perfectly conducting channel.Comment: 7 pages, 16 figure

    In silico design of novel probes for the atypical opioid receptor MRGPRX2

    Get PDF
    The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small molecule MRGPRX2 agonists, selective nanomolar potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found many opioid compounds activated MRGPRX2, including (−)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan and the prodynorphin-derived peptides, dynorphin A, dynorphin B, and α- and β-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573, which represents a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases, and an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573
    corecore