46 research outputs found

    Corrosion Grade on Anchor Rods of Guyed Transmission Towers Applying Machine Committee / Grau de Corrosão em Hastes de Âncora de Torres de Transmissão Guiadas Comitê de Aplicação de Máquinas

    Get PDF
    The use of guyed structures in electric power transmission lines is a growing practice because of their cost efficiency. However, the anchor systems are subject to corrosion, which can lead to their rupture and loss of tower support. Monitoring the evolution of the corrosion of the anchor rods by visual inspection is a destructive and costly method; therefore, there is considerable interest in developing methods and tools that are capable of generating a maintenance diagnosis of the system. This work aimed to propose a classification tool for guyed towers in terms of the corrosion degree by a machine committee with neural networks and applied it to the Paraiso-Açu line located in Rio Grande do Norte in Brazil. Thirty-eight samples were collected and 33 variables related to the soil corrosion along the line were analyzed. The targets for training the networks were obtained from the inspection of anchor rods taken from the field. A simplification of the problem's dimension was proposed by principal component analysis, describing the phenomenon with 6 variables instead of 33, simplifying the practical application by massively reducing the requirements for data sampling in the field. Several network typologies were trained and the best ones in terms of their generalist and specialist capacities were combined in a machine committee for the final proposal of this work. The classification obtained by the application of the committee for 10 towers was compared with the classification from non-destructive impulse reflectometry tests and showed an 80% correlation

    Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy

    Get PDF
    Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these “side” effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.Fil: Canals, Daniel. Stony Brook University; State University of New York;Fil: Salamone, Silvia. Stony Brook University; State University of New York;Fil: Santacreu, Bruno Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Nemeth, Erika. Stony Brook University; State University of New York;Fil: Aguilar, Daniel. Biomedical Research Networking Center in Hepatic and Digestive Diseases; EspañaFil: Hernandez Corbacho, María José. Stony Brook University; State University of New York;Fil: Adada, Mohamad. Stony Brook University; State University of New York;Fil: Staquicini, Daniela I.. Rutgers Cancer Institute of New Jersey; Estados UnidosFil: Arap, Wadih. Rutgers Cancer Institute of New Jersey; Estados UnidosFil: Pasqualini, Renata. Rutgers Cancer Institute of New Jersey; Estados UnidosFil: Haley, John. Stony Brook University; State University of New York;Fil: Obeid, Lina M.. Stony Brook University; State University of New York;Fil: Hannun, Yusuf A.. Stony Brook University; State University of New York

    Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy

    Get PDF
    Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these “side” effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.Fil: Canals, Daniel. Stony Brook University; State University of New York;Fil: Salamone, Silvia. Stony Brook University; State University of New York;Fil: Santacreu, Bruno Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Nemeth, Erika. Stony Brook University; State University of New York;Fil: Aguilar, Daniel. Biomedical Research Networking Center in Hepatic and Digestive Diseases; EspañaFil: Hernandez Corbacho, María José. Stony Brook University; State University of New York;Fil: Adada, Mohamad. Stony Brook University; State University of New York;Fil: Staquicini, Daniela I.. Rutgers Cancer Institute of New Jersey; Estados UnidosFil: Arap, Wadih. Rutgers Cancer Institute of New Jersey; Estados UnidosFil: Pasqualini, Renata. Rutgers Cancer Institute of New Jersey; Estados UnidosFil: Haley, John. Stony Brook University; State University of New York;Fil: Obeid, Lina M.. Stony Brook University; State University of New York;Fil: Hannun, Yusuf A.. Stony Brook University; State University of New York

    Aberrant expression of the S1P regulating enzymes, SPHK1 and SGPL1, contributes to a migratory phenotype in OSCC mediated through S1PR2.

    Get PDF
    Oral squamous cell carcinoma (OSCC) is a lethal disease with a 5-year mortality rate of around 50%. Molecular targeted therapies are not in routine use and novel therapeutic targets are required. Our previous microarray data indicated sphingosine 1-phosphate (S1P) metabolism and signalling was deregulated in OSCC. In this study, we have investigated the contribution of S1P signalling to the pathogenesis of OSCC. We show that the expression of the two major enzymes that regulate S1P levels were altered in OSCC: SPHK1 was significantly upregulated in OSCC tissues compared to normal oral mucosa and low levels of SGPL1 mRNA correlated with a worse overall survival. In in vitro studies, S1P enhanced the migration/invasion of OSCC cells and attenuated cisplatin-induced death. We also demonstrate that S1P receptor expression is deregulated in primary OSCCs and that S1PR2 is over-expressed in a subset of tumours, which in part mediates S1P-induced migration of OSCC cells. Lastly, we demonstrate that FTY720 induced significantly more apoptosis in OSCC cells compared to non-malignant cells and that FTY720 acted synergistically with cisplatin to induce cell death. Taken together, our data show that S1P signalling promotes tumour aggressiveness in OSCC and identify S1P signalling as a potential therapeutic target.This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access

    Spinster Homolog 2 (Spns2) Deficiency Causes Early Onset Progressive Hearing Loss

    Get PDF
    Spinster homolog 2 (Spns2) acts as a Sphingosine-1-phosphate (S1P) transporter in zebrafish and mice, regulating heart development and lymphocyte trafficking respectively. S1P is a biologically active lysophospholipid with multiple roles in signalling. The mechanism of action of Spns2 is still elusive in mammals. Here, we report that Spns2-deficient mice rapidly lost auditory sensitivity and endocochlear potential (EP) from 2 to 3 weeks old. We found progressive degeneration of sensory hair cells in the organ of Corti, but the earliest defect was a decline in the EP, suggesting that dysfunction of the lateral wall was the primary lesion. In the lateral wall of adult mutants, we observed structural changes of marginal cell boundaries and of strial capillaries, and reduced expression of several key proteins involved in the generation of the EP (Kcnj10, Kcnq1, Gjb2 and Gjb6), but these changes were likely to be secondary. Permeability of the boundaries of the stria vascularis and of the strial capillaries appeared normal. We also found focal retinal degeneration and anomalies of retinal capillaries together with anterior eye defects in Spns2 mutant mice. Targeted inactivation of Spns2 in red blood cells, platelets, or lymphatic or vascular endothelial cells did not affect hearing, but targeted ablation of Spns2 in the cochlea using a Sox10-Cre allele produced a similar auditory phenotype to the original mutation, suggesting that local Spns2 expression is critical for hearing in mammals. These findings indicate that Spns2 is required for normal maintenance of the EP and hence for normal auditory function, and support a role for S1P signalling in hearing

    Use of spreadsheets in environment education: an application for solid waste management

    No full text
    Spreadsheets have gained increasing popularity in engineering applications, used by both students and practicing engineers. In addition to their low cost, they are easy to learn, and provide the user with the flexibility to display different sets of results just upon changing the input data. This paper illustrates the use of an Excel spreadsheet for solid waste management practices. The program, which has been developed as part of the 'Solid Waste Management' course at the Faculty of Engineering and Architecture, American University of Beirut, allows the user to determine the chemical composition of the waste and its corresponding gas generation potential which are directly linked to a module that allows the prediction of the temporal distribution of gas and leachate production from landfills. The data representing the waste composition and chemistry, gas and leachate production are then automatically plotted into a series of curves and bar charts that allow the decision maker and designer to point out important characteristics, trends and relationships among various parameters controlling solid waste management control systems and landfill operations

    Laser Interstitial Thermal Therapy for Posterior Fossa Lesions: A Systematic Review and Analysis of Multi-Institutional Outcomes

    No full text
    Background: Laser interstitial thermal therapy (LITT) has emerged as a treatment option for deep-seated primary and metastatic brain lesions; however, hardly any data exist regarding LITT for lesions of the posterior fossa. Methods: A quantitative systematic review was performed. Article selection was performed by searching MEDLINE (using PubMed), Scopus, and Cochrane electronic bibliographic databases. Inclusion criteria were studies assessing LITT on posterior fossa tumors. Results: 16 studies comprising 150 patients (76.1% female) with a mean age of 56.47 years between 2014 and 2021 were systematically reviewed for treatment outcomes and efficacy. Morbidity and mortality data could be extracted for 131 of the 150 patients. Death attributed to treatment failure, disease progression, recurrence, or postoperative complications occurred in 6.87% (9/131) of the pooled sample. Procedure-related complications, usually including new neurologic deficits, occurred in approximately 14.5% (19/131) of the pooled sample. Neurologic deficits improved with time in most cases, and 78.6% (103/131) of the pooled sample experienced no complications and progression-free survival at the time of last follow-up. Conclusions: LITT for lesions of the posterior fossa continues to show promising data. Future clinical cohort studies are required to further direct treatment recommendations
    corecore