259 research outputs found

    A New Statistic to Evaluate Imputation Reliability

    Get PDF
    As the amount of data from genome wide association studies grows dramatically, many interesting scientific questions require imputation to combine or expand datasets. However, there are two situations for which imputation has been problematic: (1) polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects are genotyped on different platforms. Traditional measures of imputation cannot effectively address these problems.We introduce a new statistic, the imputation quality score (IQS). In order to differentiate between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS adjusts the concordance between imputed and genotyped SNPs for chance. We first evaluated IQS in relation to minor allele frequency. Using a sample of subjects genotyped on the Illumina 1 M array, we extracted those SNPs that were also on the Illumina 550 K array and imputed them to the full set of the 1 M SNPs. As expected, the average IQS value drops dramatically with a decrease in minor allele frequency, indicating that IQS appropriately adjusts for minor allele frequency. We then evaluated whether IQS can filter poorly-imputed SNPs in situations where cases and controls are genotyped on different platforms. Randomly dividing the data into "cases" and "controls", we extracted the Illumina 550 K SNPs from the cases and imputed the remaining Illumina 1 M SNPs. The initial Q-Q plot for the test of association between cases and controls was grossly distorted (lambda = 1.15) and had 4016 false positives, reflecting imputation error. After filtering out SNPs with IQS<0.9, the Q-Q plot was acceptable and there were no longer false positives. We then evaluated the robustness of IQS computed independently on the two halves of the data. In both European Americans and African Americans the correlation was >0.99 demonstrating that a database of IQS values from common imputations could be used as an effective filter to combine data genotyped on different platforms.IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly useful for SNPs with low minor allele frequency and when datasets are genotyped on different platforms

    An ADH1B variant and peer drinking in progression to adolescent drinking milestones: Evidence of a gene-by-environment interaction

    Get PDF
    BACKGROUND: Adolescent drinking is an important public health concern, one that is influenced by both genetic and environmental factors. The functional variant rs1229984 in alcohol dehydrogenase 1B (ADH1B) has been associated at a genome-wide level with alcohol use disorders in diverse adult populations. However, few data are available regarding whether this variant influences early drinking behaviors and whether social context moderates this effect. This study examines the interplay between rs1229984 and peer drinking in the development of adolescent drinking milestones. METHODS: One thousand five hundred and fifty European and African American individuals who had a full drink of alcohol before age 18 were selected from a longitudinal study of youth as part of the Collaborative Study on the Genetics of Alcoholism (COGA). Cox proportional hazards regression, with G × E product terms in the final models, was used to study 2 primary outcomes during adolescence: age of first intoxication and age of first DSM-5 alcohol use disorder symptom. RESULTS: The minor A allele of rs1229984 was associated with a protective effect for first intoxication (HR = 0.56, 95% CI 0.41 to 0.76) and first DSM-5 symptom (HR = 0.45, 95% CI 0.26 to 0.77) in the final models. Reporting that most or all best friends drink was associated with a hazardous effect for first intoxication (HR = 1.81, 95% CI 1.62 to 2.01) and first DSM-5 symptom (HR = 2.17, 95% 1.88 to 2.50) in the final models. Furthermore, there was a significant G × E interaction for first intoxication (p = 0.002) and first DSM-5 symptom (p = 0.01). Among individuals reporting none or few best friends drinking, the ADH1B variant had a protective effect for adolescent drinking milestones, but for those reporting most or all best friends drinking, this effect was greatly reduced. CONCLUSIONS: Our results suggest that the risk factor of best friends drinking attenuates the protective effect of a well-established ADH1B variant for 2 adolescent drinking behaviors. These findings illustrate the interplay between genetic and environmental factors in the development of drinking milestones during adolescence

    Using genetic information from candidate gene and genome-wide association studies in risk prediction for alcohol dependence

    Get PDF
    Family-based and genome-wide association studies (GWAS) of alcohol dependence (AD) have reported numerous associated variants. The clinical validity of these variants for predicting AD compared with family history information has not been reported. Using the Collaborative Study on the Genetics of Alcoholism (COGA) and the Study of Addiction: Genes and Environment (SAGE) GWAS samples, we examined the aggregate impact of multiple single nucleotide polymorphisms (SNPs) on risk prediction. We created genetic sum scores by adding risk alleles associated in discovery samples, and then tested the scores for their ability to discriminate between cases and controls in validation samples. Genetic sum scores were assessed separately for SNPs associated with AD in candidate gene studies and SNPs from GWAS analyses that met varying P-value thresholds. Candidate gene sum scores did not exhibit significant predictive accuracy. Family history was a better classifier of case-control status, with a significant area under the receiver operating characteristic curve (AUC) of 0.686 in COGA and 0.614 in SAGE. SNPs that met less stringent P-value thresholds of 0.01-0.50 in GWAS analyses yielded significant AUC estimates, ranging from mean estimates of 0.549 for SNPs with P < 0.01 to 0.565 for SNPs with P < 0.50. This study suggests that SNPs currently have limited clinical utility, but there is potential for enhanced predictive ability with better understanding of the large number of variants that might contribute to risk

    Family-based association analysis of alcohol dependence criteria and severity

    Get PDF
    Background Despite the high heritability of alcohol dependence (AD), the genes found to be associated with it account for only a small proportion of its total variability. The goal of this study was to identify and analyze phenotypes based on homogeneous classes of individuals to increase the power to detect genetic risk factors contributing to the risk of AD. Methods The 7 individual DSM-IV criteria for AD were analyzed using latent class analysis (LCA) to identify classes defined by the pattern of endorsement of the criteria. A genome-wide association study was performed in 118 extended European American families (n = 2,322 individuals) densely affected with AD to identify genes associated with AD, with each of the seven DSM-IV criteria, and with the probability of belonging to two of three latent classes. Results Heritability for DSM-IV AD was 61%, and ranged from 17-60% for the other phenotypes. A SNP in the olfactory receptor OR51L1 was significantly associated (7.3 × 10−8) with the DSM-IV criterion of persistent desire to, or inability to, cut down on drinking. LCA revealed a three-class model: the “low risk” class (50%) rarely endorsed any criteria, and none met criteria for AD; the “moderate risk” class (33) endorsed primarily 4 DSM-IV criteria, and 48% met criteria for AD; the “high risk” class (17%) manifested high endorsement probabilities for most criteria and nearly all (99%) met criteria for AD One single nucleotide polymorphism (SNP) in a sodium leak channel NALCN demonstrated genome-wide significance with the high risk class (p=4.1 × 10−8). Analyses in an independent sample did not replicate these associations. Conclusion We explored the genetic contribution to several phenotypes derived from the DSM-IV alcohol dependence criteria. The strongest evidence of association was with SNPs in NALCN and OR51L1

    CYP2A6 metabolism in the development of smoking behaviors in young adults

    Get PDF
    Cytochrome P450 2A6 (CYP2A6) encodes the enzyme responsible for the majority of nicotine metabolism. Previous studies support that slow metabolizers smoke fewer cigarettes once nicotine dependent but provide conflicting results on the role of CYP2A6 in the development of dependence. By focusing on the critical period of young adulthood, this study examines the relationship of CYP2A6 variation and smoking milestones. A total of 1209 European American young adults enrolled in the Collaborative Study on the Genetics of Alcoholism were genotyped for CYP2A6 variants to calculate a previously well-validated metric that estimates nicotine metabolism. This metric was not associated with the transition from never smoking to smoking initiation nor with the transition from initiation to daily smoking (P > 0.4). But among young adults who had become daily smokers (n = 506), decreased metabolism was associated with increased risk of nicotine dependence (P = 0.03) (defined as Fagerström Test for Nicotine Dependence score ≥4). This finding was replicated in the Collaborative Genetic Study of Nicotine Dependence with 335 young adult daily smokers (P = 0.02). Secondary meta-analysis indicated that slow metabolizers had a 53 percent increased odds (OR = 1.53, 95 percent CI 1.11-2.11, P = 0.009) of developing nicotine dependence compared with normal metabolizers. Furthermore, secondary analyses examining four-level response of time to first cigarette after waking (>60, 31-60, 6-30, ≤5 minutes) demonstrated a robust effect of the metabolism metric in Collaborative Study on the Genetics of Alcoholism (P = 0.03) and Collaborative Genetic Study of Nicotine Dependence (P = 0.004), illustrating the important role of this measure of dependence. These findings highlight the complex role of CYP2A6 variation across different developmental stages of smoking behaviors

    High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas

    Get PDF
    Contains fulltext : 80487.pdf (publisher's version ) (Open Access)BACKGROUND: The diagnosis of benign renal oncocytomas (RO) and chromophobe renal cell carcinomas (RCC) based on their morphology remains uncertain in several cases. METHODS: We have applied Affymetrix GeneChip Mapping 250 K NspI high-density oligoarrays to identify small genomic alterations, which may occur beyond the specific losses of entire chromosomes, and also Affymetrix GeneChip HG-U133 Plus2.0 oligoarrays for gene expression profiling. RESULTS: By analysing of DNA extracted from 30 chRCCs and 42 ROs, we have confirmed the high specificity of monosomies of chromosomes 1, 2, 6, 10, 13, 17 and 21 in 70-93% of the chRCCs, while ROs displayed loss of chromosome 1 and 14 in 24% and 5% of the cases, respectively. We demonstrated that chromosomal gene expression biases might correlate with chromosomal abnormalities found in chromophobe RCCs and ROs. The vast majority genes downregulated in chromophobe RCC were mapped to chromosomes 2, 6, 10, 13 and 17. However, most of the genes overexpressed in chromophobe RCCs were located to chromosomes without any copy number changes indicating a transcriptional regulation as a main event. CONCLUSION: The SNP-array analysis failed to detect recurrent small deletions, which may mark loci of genes involved in the tumor development. However, we have identified loss of chromosome 2, 10, 13, 17 and 21 as discriminating alteration between chromophobe RCCs and ROs. Therefore, detection of these chromosomal changes can be used for the accurate diagnosis in routine histology

    Investigation of gene-environment interactions in relation to tic severity

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive–compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene–environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene–environment studies

    New Jersey Center for Tourette Syndrome Sharing Repository: methods and sample description

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tourette Syndrome is a neuropsychiatric disorder characterized by chronic motor and phonic tics. Affected individuals and their family members are at an increased risk for other neuropsychiatric conditions including obsessive-compulsive disorder and attention deficit hyperactivity disorder. While there is consistent evidence that genetic factors play a significant etiologic role, no replicable susceptibility alleles have thus far been identified.</p> <p>Description</p> <p>Here we discuss a sharing resource of clinical and genetic data, the New Jersey Center for Tourette Syndrome Sharing Repository, whose goal is to provide clinical data, DNA, and lymphoblastoid cell lines to qualified researchers.</p> <p>Conclusion</p> <p>Opening access to the data and patient material to the widest possible research community will hasten the identification of causal genetic factors and facilitate better understanding and treatment of this often impairing disorder.</p
    corecore