70 research outputs found

    Hanle effect in the CN violet system with LTE modeling

    Full text link
    Weak entangled magnetic fields with mixed polarity occupy the main part of the quiet Sun. The Zeeman effect diagnostics fails to measure such fields because of cancellation in circular polarization. However, the Hanle effect diagnostics, accessible through the second solar spectrum, provides us with a very sensitive tool for studying the distribution of weak magnetic fields on the Sun. Molecular lines are very strong and even dominate in some regions of the second solar spectrum. The CN B2ΣX2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system is one of the richest and most promising systems for molecular diagnostics and well suited for the application of the differential Hanle effect method. The aim is to interpret observations of the CN B2ΣX2ΣB {}^{2} \Sigma - X {}^{2} \Sigma system using the Hanle effect and to obtain an estimation of the magnetic field strength. We assume that the CN molecular layer is situated above the region where the continuum radiation is formed and employ the single-scattering approximation. Together with the Hanle effect theory this provides us with a model that can diagnose turbulent magnetic fields. We have succeeded in fitting modeled CN lines in several regions of the second solar spectrum to observations and obtained a magnetic field strength in the range from 10--30 G in the upper solar photosphere depending on the considered lines.Comment: Accepted for publication in Astronomy and Astrophysic

    Radiative association and inverse predissociation of oxygen atoms

    Full text link
    The formation of \mbox{O}_2 by radiative association and by inverse predissociation of ground state oxygen atoms is studied using quantum-mechanical methods. Cross sections, emission spectra, and rate coefficients are presented and compared with prior experimental and theoretical results. At temperatures below 1000~K radiative association occurs by approach along the 13Πu1\,{}^3\Pi_u state of \mbox{O}_2 and above 1000~K inverse predissociation through the \mbox{B}\,{}^3\Sigma_u^- state is the dominant mechanism. This conclusion is supported by a quantitative comparison between the calculations and data obtained from hot oxygen plasma spectroscopy.Comment: submitted to Phys. Rev. A (Sept. 7., 1994), 19 pages, 4 figures, latex (revtex3.0 and epsf.sty

    The circumstellar shell of the post-AGB star HD 56126: the 12^{12}CN/13^{13}CN isotope ratio and fractionation

    Get PDF
    We have detected circumstellar absorption lines of the 12^{12}CN and 13^{13}CN Violet and Red System in the spectrum of the post-AGB star HD~56126. From a synthetic spectrum analysis, we derive a Doppler broadening parameter of b=0.51±0.04b=0.51\pm0.04 km~s1^{-1}, 12^{12}CN/13^{13}CN=38±2=38\pm2, and a lower limit of 20002000 on 12^{12}CN/14^{14}CN and 12^{12}C14^{14}N/12^{12}C15^{15}N. A simple chemical model has been computed of the circumstellar shell surrounding HD~56126 that takes into account the gas-phase ion-molecule reaction between CN and C+^{+}. From this we infer that this reaction leads to isotopic fractionation of CN. Taking into account the isotopic exchange reaction and the observed 12^{12}CN/13^{13}CN we find 12^{12}C/13^{13}C67\sim 67 (for Tkin=25T_{\rm kin}=25 K). Our analysis suggests that 12^{12}CN has a somewhat higher rotational temperature than 13^{13}CN: Trot=11.5±0.6T_{\rm rot}=11.5\pm0.6 and 8.0±0.68.0\pm0.6 K respectively. We identify possible causes for this difference in excitation temperature, among which the NN'' dependence of the isotopic exchange reaction.Comment: 24 pages, 6 figues Apj accepte

    Controlled production of atomic oxygen and nitrogen in a pulsed radio-frequency atmospheric-pressure plasma

    Get PDF
    International audienceRadio-frequency driven atmospheric pressure plasmas are efficient sources for the production of reactive species at ambient pressure and close to room temperature. Pulsing the radio-frequency power input provides additional control over species production and gas temperature. Here, we demonstrate the controlled production of highly reactive atomic oxygen and nitrogen in a pulsed radio-frequency ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn001.gif] 13.56 MHz) atmospheric-pressure plasma, operated with a small ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn002.gif] 0.1 % air-like admixture ( ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn003.gif] \rm N_2 / ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn004.gif] \rm O_2 at ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn005.gif] 4:1 ) through variations in the duty cycle. Absolute densities of atomic oxygen and nitrogen are determined through vacuum-ultraviolet absorption spectroscopy using the DESIRS beamline at the SOLEIL synchrotron coupled with a high resolution Fourier-transform spectrometer. The neutral-gas temperature is measured using nitrogen molecular optical emission spectroscopy. For a fixed applied-voltage amplitude (234?V), varying the pulse duty cycle from 10% to 100% at a fixed 10?kHz pulse frequency enables us to regulate the densities of atomic oxygen and nitrogen over the ranges of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn006.gif] (0.18±0.03) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn007.gif] (3.7±0.1)× 10^20 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn008.gif] \rm m^-3 and ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn009.gif] (0.2±0.06) ? ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn010.gif] (4.4±0.8) × 10^19 ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn011.gif] \rm m^-3 , respectively. The corresponding 11?K increase in the neutral-gas temperature with increased duty cycle, up to a maximum of ##IMG## [http://ej.iop.org/images/0022-3727/50/45/455204/daa8da2ieqn012.gif] (314±4) K, is relatively small. This additional degree of control, achieved through regulation of the pulse duty cycle and time-averaged power, could be of particular interest for prospective biomedical applications

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
    corecore