553 research outputs found
Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics
Tropical forests are increasingly degraded by industrial logging, urbanization, agriculture, and infrastructure, with only 20% of the remaining area considered intact. However, this figure does not include other, more cryptic but pervasive forms of degradation, such as overhunting. Here, we quantified and mapped the spatial patterns of mammal defaunation in the tropics using a database of 3,281 mammal abundance declines from local hunting studies. We simultaneously accounted for population abundance declines and the probability of local extirpation of a population as a function of several predictors related to human accessibility to remote areas and species’ vulnerability to hunting. We estimated an average abundance decline of 13% across all tropical mammal species, with medium-sized species being reduced by >27% and large mammals by >40%. Mammal populations are predicted to be partially defaunated (i.e., declines of 10%–100%) in ca. 50% of the pantropical forest area (14 million km2), with large declines (>70%) in West Africa. According to our projections, 52% of the intact forests (IFs) and 62% of the wilderness areas (WAs) are partially devoid of large mammals, and hunting may affect mammal populations in 20% of protected areas (PAs) in the tropics, particularly in West and Central Africa and Southeast Asia. The pervasive effects of overhunting on tropical mammal populations may have profound ramifications for ecosystem functioning and the livelihoods of wild-meat-dependent communities, and underscore that forest coverage alone is not necessarily indicative of ecosystem intactness. We call for a systematic consideration of hunting effects in (large-scale) biodiversity assessments for more representative estimates of human-induced biodiversity loss
Assessing the reliability of species distribution projections in climate change research
Aim: Forecasting changes in species distribution under future scenarios is one of the most prolific areas of application for species distribution models (SDMs). However, no consensus yet exists on the reliability of such models for drawing conclusions on species’ distribution response to changing climate. In this study, we provide an overview of common modelling practices in the field and assess the reliability of model predictions using a virtual species approach. Location: Global. Methods: We first review papers published between 2015 and 2019. Then, we use a virtual species approach and three commonly applied SDM algorithms (GLM, MaxEnt and random forest) to assess the estimated and actual predictive performance of models parameterized with different modelling settings and violations of modelling assumptions. Results: Most SDM papers relied on single models (65%) and small samples (N < 50, 62%), used presence-only data (85%), binarized models' output (74%) and used a split-sample validation (94%). Our simulation reveals that the split-sample validation tends to be over-optimistic compared to the real performance, whereas spatial block validation provides a more honest estimate, except when datasets are environmentally biased. The binarization of predicted probabilities of presence reduces models’ predictive ability considerably. Sample size is one of the main predictors of the real model accuracy, but has little influence on estimated accuracy. Finally, the inclusion of ecologically irrelevant predictors and the violation of modelling assumptions increases estimated accuracy but decreases real accuracy of model projections, leading to biased estimates of range contraction and expansion. Main conclusions: Our ability to predict future species distribution is low on average, particularly when models’ predictions are binarized. A robust validation by spatially independent samples is required, but does not rule out inflation of model accuracy by assumption violation. Our findings call for caution in the application and interpretation of SDM projections under different climates
Combined effects of land use and hunting on distributions of tropical mammals
Land use and hunting are 2 major pressures on biodiversity in the tropics. Yet, their combined impacts have not been systematically quantified at a large scale. We estimated the effects of both pressures on the distributions of 1884 tropical mammal species by integrating species’ range maps, detailed land-use maps (1992 and 2015), species-specific habitat preference data, and a hunting pressure model. We further identified areas where the combined impacts were greatest (hotspots) and least (coolspots) to determine priority areas for mitigation or prevention of the pressures. Land use was the main driver of reduced distribution of all mammal species considered. Yet, hunting pressure caused additional reductions in large-bodied species’ distributions. Together, land use and hunting reduced distributions of species by 41% (SD 30) on average (year 2015). Overlap between impacts was only 2% on average. Land use contributed more to the loss of distribution (39% on average) than hunting (4% on average). However, hunting reduced the distribution of large mammals by 29% on average; hence, large mammals lost a disproportional amount of area due to the combination of both pressures. Gran Chaco, the Atlantic Forest, and Thailand had high levels of impact across the species (hotspots of area loss). In contrast, the Amazon and Congo Basins, the Guianas, and Borneo had relatively low levels of impact (coolspots of area loss). Overall, hunting pressure and human land use increased from 1992 to 2015 and corresponding losses in distribution increased from 38% to 41% on average across the species. To effectively protect tropical mammals, conservation policies should address both pressures simultaneously because their effects are highly complementary. Our spatially detailed and species-specific results may support future national and global conservation agendas, including the design of post-2020 protected area targets and strategies
The impact of hunting on tropical mammal and bird populations
Hunting is a major driver of biodiversity loss, but a systematic large-scale estimate of hunting-induced defaunation is lacking. We synthesized 176 studies to quantify hunting-induced declines of mammal and bird populations across the tropics. Bird and mammal abundances declined by 58% (25 to 76%) and by 83% (72 to 90%) in hunted compared with unhunted areas. Bird and mammal populations were depleted within 7 and 40 kilometers from hunters’ access points (roads and settlements). Additionally, hunting pressure was higher in areas with better accessibility to major towns where wild meat could be traded. Mammal population densities were lower outside protected areas, particularly because of commercial hunting. Strategies to sustainably manage wild meat hunting in both protected and unprotected tropical ecosystems are urgently needed to avoid further defaunation
Mechanistic insights into the role of large carnivores for ecosystem structure and functioning
Large carnivores can exert top–down effects in ecosystems, but the size of these effects are largely unknown. Empirical investigation on the importance of large carnivores for ecosystem structure and functioning presents a number of challenges due to the large spatio-temporal scale and the complexity of such dynamics. Here, we applied a mechanistic global ecosystem model to investigate the influence of large-carnivore removal from undisturbed ecosystems. First, we simulated large-carnivore removal on the global scale to inspect the geographic pattern of top–down control and to disentangle the functional role of large carnivores in top–down control in different environmental contexts. Second, we conducted four small-scale ecosystem simulation experiments to understand direct and indirect changes in food-web structure under different environmental conditions. We found that the removal of top–down control exerted by large carnivores (> 21 kg) can trigger large trophic cascades, leading to an overall decrease in autotroph biomass globally. Furthermore, the loss of large carnivores resulted in an increase of mesopredators. The magnitude of these changes was positively related to primary productivity (NPP), in line with the ‘exploitation ecosystem hypothesis’. In addition, we found that seasonality in NPP dampened the magnitude of change following the removal of large carnivores. Our results reinforce the idea that large carnivores play a fundamental role in shaping ecosystems, and further declines and extinctions can trigger substantial ecosystem responses. Our findings also support previous studies suggesting that natural ecosystem dynamics have been severely modified and are still changing as a result of the widespread decline and extinction of large carnivores
Applying habitat and population-density models to land-cover time series to inform IUCN Red List assessments
The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment
Бюджет домохозяйств: сущность, финансовые ресурсы формирования, государственное регулирование
Цель статьи - теоретическое обоснование бюджета домашнего хозяйства и влияния на него со стороны государства, практический анализ формирования доходной и расходной частей бюджета домохозяйств
Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty: A meta-analysis
Background and purpose: Patient-specific instrumentation (PSI) for total knee arthroplasty (TKA) has been introduced to improve alignment and reduce outliers, increase efficiency, and reduce operation time. In order to improve our understanding of the outcomes of patient-specific instrumentation, we conducted a meta-analysis.
Patients and methods: We identified randomized and quasi-randomized controlled trials (RCTs) comparing patient-specific and conventional instrumentation in TKA. Weighted mean differences and risk ratios were determined for radiographic accuracy, operation time, hospital stay, blood loss, number of surgical trays required, and patient-reported outcome measures.
Results: 21 RCTs involving 1,587 TKAs were included. Patient-specific instrumentation resulted in slightly more accurate hip-knee-ankle axis (0.3°), coronal femoral alignment (0.3°, femoral flexion (0.9°), tibial slope (0.7°), and femoral component rotation (0.5°). The risk ratio of a coronal plane outlier (\u3e 3° deviation of chosen target) for the tibial component was statistically significantly increased in the PSI group (RR = 1.64). No significance was found for other radiographic measures. Operation time, blood loss, and transfusion rate were similar. Hospital stay was significantly shortened, by approximately 8 h, and the number of surgical trays used decreased by 4 in the PSI group. Knee Society scores and Oxford knee scores were similar.
Interpretation: Patient-specific instrumentation does not result in clinically meaningful improvement in alignment, fewer outliers, or better early patient-reported outcome measures. Efficiency is improved by reducing the number of trays used, but PSI does not reduce operation time
The Grail theorem prover: Type theory for syntax and semantics
As the name suggests, type-logical grammars are a grammar formalism based on
logic and type theory. From the prespective of grammar design, type-logical
grammars develop the syntactic and semantic aspects of linguistic phenomena
hand-in-hand, letting the desired semantics of an expression inform the
syntactic type and vice versa. Prototypical examples of the successful
application of type-logical grammars to the syntax-semantics interface include
coordination, quantifier scope and extraction.This chapter describes the Grail
theorem prover, a series of tools for designing and testing grammars in various
modern type-logical grammars which functions as a tool . All tools described in
this chapter are freely available
Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites,” Physical Review B,
Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Conducting submicron particles are well suited as filler particles in nonconducting polymer matrices to obtain a conducting composite with a low percolation threshold. Going to nanometer-sized filler particles imposes a restriction to the conductivity of the composite, due to the reduction of the density of states involved in the hopping process between the particles, compared to its value within the crystallites. We show how those microscopic parameters that govern the charge-transport processes across many decades of length scales can accurately and consistently be determined by a range of dielectric-spectroscopy techniques from a few hertz to infrared frequencies. The method, which is suited for a variety of systems with restricted geometries, is applied to densely packed 7-nm-sized tin oxide crystalline particles with various degree of antimony doping and the quantitative results unambiguously show the role of the nanocrystal charging energy in limiting the hopping process
- …