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Abstract: The IUCN (International Union for Conservation of Nature) Red List categories and criteria are
the most widely used framework for assessing the relative extinction risk of species. The criteria are based
on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations.
However, data on these parameters are sparse and uncertain for many species and unavailable for others,
potentially leading to their misclassification or classification as data deficient. We devised an approach that
combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal
distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and
trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our
approach to nonpelagic birds and terrestrial mammals globally (�15,000 species). The predicted categories
were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted
4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2%
of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat
fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative
definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for
improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria.
Our approach complements traditional methods of estimating parameters for IUCN Red List assessments.
Furthermore, it readily provides an early-warning system to identify species potentially warranting changes
in their extinction-risk category based on periodic updates of land-cover information. Given our method relies
on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk
than currently evaluated should be prioritized for reassessment.
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2 Towards an Automatic Red List Screening

Aplicación de Modelos de Hábitat y de Densidad Poblacional a Series de Tiempo de la Cobertura del Suelo
para Informar las Valoraciones de la Lista Roja de la UICN

Resumen: Las categoŕıas y los criterios de la Lista Roja de la UICN (Unión Internacional para la Conser-
vación de la Naturaleza) son el marco de referencia utilizado con mayor frecuencia para valorar el riesgo de
extinción relativo de las especies. Los criterios se basan en umbrales cuantitativos relacionados con el tamaño,
las tendencias y la estructura de la distribución y las poblaciones de las especies. Sin embargo, los datos sobre
estos parámetros son escasos e inciertos para muchas especies y para otras no se encuentran disponibles, lo
puede resultar en una clasificación errónea o en que se las clasifique como una especie con deficiencia de datos.
Hemos diseñado una estrategia que combina datos sobre el cambio en la cobertura del suelo, las preferencias
de hábitat espećıficas por especie, la abundancia poblacional, y la distancia de dispersión para estimar los
parámetros más importantes (extensión de la presencia, área máxima de ocupación, tamaño poblacional, y
grado y tendencia de la fragmentación) y aśı predecir las categoŕıas de la Lista Roja de la UICN para cada
especie. Hemos aplicado nuestra estrategia a las aves no pelágicas y a los mamı́feros terrestres de todo el
mundo (�15,000 especies). Las categoŕıas pronosticadas fueron bastante consecuentes con las valoraciones
publicadas por la Lista Roja de la UICN, aunque en general fueron más optimistas. Pronosticamos que el
4.2% de las especies (467 aves y 143 mamı́feros) se encuentran más amenazadas que su valoración actual
y el 20.2% de las especies con deficiencia de datos (10 aves y 114 mamı́feros) se encuentran en riesgo de
extinción. La incorporación del sub-criterio de fragmentación del hábitat redujo estas predicciones en un
1.5 – 2.3% y 6.4 – 14.9% (dependiendo de la definición cuantitativa de la fragmentación) para las especies
amenazadas y las que tienen deficiencia de datos, respectivamente, lo que resalta la necesidad de mejorar
la aplicación de este sub-criterio por parte de los asesores de la Lista Roja de la UICN. Nuestra estrategia
complementa los métodos tradicionales de estimación de parámetros para las valoraciones de la Lista Roja.
Además, proporciona un sistema inmediato de alerta temprana basado en actualizaciones periódicas de la
información sobre la cobertura del suelo que permite identificar a las especies que, potencialmente, merezcan
un cambio en su categoŕıa de riesgo de extinción. Nuestro método está basado en suposiciones optimistas
sobre la distribución y la abundancia de las especies, por lo tanto todas las especies que predecimos que tienen
una mayor categoŕıa de riesgo que la que reconoce la evaluación actual debeŕıan ser priorizadas para su
revaloración.

Palabras Clave: aves, conservación, especies con deficiencia de datos, mamı́feros, riesgo de extinción, telede-
tección
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Introduction

The International Union for Conservation of Nature
(IUCN) Red List of Threatened Species is the most au-
thoritative and widely used framework for assessment of
extinction risk of species (Rodrigues et al. 2006; IUCN
2017a). Species are assessed using 5 criteria with quan-

titative thresholds relating to the size, trends, and struc-
ture of species’ distributions and populations (Mace et al.
1992; IUCN 2017b). The assessments result in species be-
ing listed under 1 of 7 categories, from least concern (LC)
to extinct (or data deficient if insufficient information is
available to apply the criteria). The IUCN Red List now
covers >90,000 species, and a key challenge is to reassess
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the status of a large proportion of these species period-
ically and consistently with up-to-date data to identify
conservation priorities. Reassessments currently rely on
information from published and unpublished sources and
expert knowledge, but collating relevant data from the
literature and from experts for hundreds or thousands of
species across wide geographic areas can render the pro-
cess slow and costly (Rondinini et al. 2014). To increase
efficiency, a more systematic, quantitative, and compre-
hensive approach is needed to support and complement
the painstaking work of IUCN Red List assessors.

Assessing species extinction risk requires intense
and regular data gathering from all available sources.
Although data would ideally be scaled up from data
collected on the ground (Pereira et al. 2013), such
measurements are relatively costly and time consuming.
Furthermore, in situ observations are typically biased geo-
graphically and taxonomically due to a number of factors,
such as the availability of research funding, emphasis on
charismatic species, location of research institutions and
researchers, security issues, and accessibility (Wilson
et al. 2007; Boakes et al. 2010; Fleming & Bateman 2016).
Thus, there is increasing need for new technology, mod-
els, and data sets to update, improve, and increase the
consistency of assessments for large numbers of species.

The main drivers of biodiversity loss today are
overexploitation and habitat loss (Hoffmann et al. 2010;
Joppa et al. 2016). Overexploitation is challenging to
model in a predictive framework (Beńıtez-López et al.
2017), but habitat loss can be inferred indirectly with
remote-sensing data and particularly land-cover data
(Pettorelli et al. 2014). Land-cover change influences
the availability of suitable habitat and, consequently,
the potential population size of species. Within the
Climate Change Initiative (CCI) of the European Space
Agency (ESA), the CCI Land Cover partnership recently
released an annual global land-cover time series covering
24 years from 1992 to 2015 at a resolution of 10
arc-seconds (�300 m) (ESA 2017). Further, land-cover
maps from 2016 to 2019 are now being developed in the
framework of the Copernicus Climate Change Service
(C3S 312b-lot5) (C. Lamarche, personal communication).
These data sets provide an unprecedented opportunity
to quantify the effect of land-cover change on species’
habitat distribution and fragmentation in the recent past.

Land-cover change data and information on species’
habitat preferences can be coupled to assess how land-
cover change alters the extent of suitable habitat of
species and influences their risk of extinction under the
IUCN Red List criteria (e.g., Rondinini et al. 2011; Bird
et al. 2012; Visconti et al. 2016). For example, recent
remotely sensed images of forest cover have been used
to assess extinction risk and its recent changes for forest-
dependent species (Buchanan et al. 2008; Tracewski et al.
2016). Such studies typically focus on criteria A (reduc-
tion in population size) and B (small and fragmented or

declining range) (e.g., Tracewski et al. 2016), whereas
few have considered criterion C1 (small and declining
population) (e.g. Buchanan et al. 2008) or D1(very small
population) (e.g., Visconti et al. 2016).

Here we demonstrated for all nonpelagic birds (10,378
species) and terrestrial (i.e., nonmarine) mammals
(4,835 species) how IUCN Red List criteria can be
informed by coupling land-cover time series, species’
habitat preferences, and statistical predictions of species
population density and dispersal distance. We used
maps of species’ distributions and information on
species’ habitat preferences from the IUCN Red List and
land-cover time series data from the ESA to estimate
species’ potential distributions and change in these over
time. We then estimated the potential population size in
suitable habitat and the level of population fragmentation
following IUCN Red List guidance. We also assessed the
extinction risk of species under 6 IUCN Red List criteria
(A2, B1, B2, C1, D1, and D2).

Methods

Red List Criteria

For the IUCN Red List, species are assessed against all
criteria for which suitable data are available and are listed
in the highest category under which they qualify (IUCN
2017b). Accordingly, we assessed all species based on the
6 criteria that can be informed by land cover and land-
cover change and classified them in the most threatened
category in which they qualified. These included criteria
A2 (population reduction in the last 10 years or 3 genera-
tions, whichever is longer) and B1 (small extent of occur-
rence [EOO]) and B2 (area of occupancy [AOO]) in com-
bination with subcriteria a (severe fragmentation) and biii
(continuing decline in habitat area, habitat extent, and/or
quality of habitat), C1 (small population size and decline),
D1 (very small population size), and D2 (very small AOO
and plausible threats). Altogether, these criteria are cur-
rently used for the classification of 68% of threatened
birds and 84% of threatened mammals. These criteria
permit the classification of species into 3 threatened cat-
egories: vulnerable (VU), endangered (EN), and critically
endangered (CR). If the species does not qualify under
any of these categories, the species is classified as LC or
near threatened (NT). However, we did not consider the
NT category because it lacks explicit quantitative criteria
akin to those for the threatened categories and has thus
been applied less consistently across different taxa.

Input Data

We considered all nonpelagic birds and terrestrial mam-
mals with data on habitat preferences: total of 10,378 bird
and 4,835 mammal species. We excluded pelagic birds
(n = 362) because they spend most of the time in the
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open ocean far from land, and only return to very specific
locations on land to breed, typically on rocky islands or
coastal cliffs, where land-cover change is generally not
the major threat and for which analysis of land-cover
change is therefore not particularly informative and is
extremely sensitive to the resolution used. We used the
area of a minimum convex polygon encompassing the
distribution maps from the IUCN Red List (IUCN 2017a;
BirdLife International 2017a) to estimate the EOO (Joppa
et al. 2016; IUCN 2017b). For migratory birds where poly-
gons are classified as “resident,” “breeding range,” and
“nonbreeding range,” the EOO was equal to the small-
est between 2 minimum convex polygons encompassing
the resident and breeding range or the resident and non-
breeding range (IUCN 2017b). We clipped the EOO maps
by suitable habitat for each species based on habitat pref-
erences coded against the IUCN habitats classification
scheme (IUCN 2018). We used habitats listed in level 2 of
the scheme that were coded as “suitable” for each species
and excluded land at unsuitable altitudes within species
ranges with data on altitudinal preferences from the IUCN
Red List and the EarthEnv-DEM90 digital elevation model
(Robinson et al. 2014). To reclassify the suitable habitat
and calculate the “extent of suitable habitat” (or ESH in
previous studies), we used land-cover data downloaded
from https://www.esa-landcover-cci.org/ (ESA 2017) and
matched it to the IUCN habitat classification scheme in
level 2 following the crosswalk (i.e., conversion table)
in Supporting Information. There were 536 bird and 74
mammal species for which altitudinal or habitat prefer-
ences did not result in any suitable habitat within the
range, indicating possible errors in either the habitat
preferences classes, altitudinal tolerances, or the match
between IUCN and ESA CCI categories. This was partic-
ularly a problematic for insular bird species. Therefore,
we excluded these species, resulting in a final data set of
9,842 birds and 4,761 mammals.

Each species’ ESH was used in 2 ways relevant to the
application of IUCN Red List criteria (Supporting Infor-
mation). First, an upper estimate of the potential AOO
was estimated by resampling the ESH from 300-m to 2-
km resolution so that any 2-km cell intersecting at least
1,300-m cell contributed to the AOO. This follows the
standardized procedure to harmonize assessments across
taxa with distributional data mapped at different resolu-
tions (IUCN 2017b). Second, we estimated the potential
population size within the ESH with population-density
models based on trait information (body mass and diet),
local environmental conditions (primary productivity and
climatic conditions), and taxonomic information at the
level of the models’ random effects (detailed explanation
of the procedure in Supporting Information) (Santini et al.
2018). Although the AOO and the suitable habitat used to
estimate abundance were derived from the same habitat
suitability maps (ESH), it was possible that their trend
was inconsistent, for instance when AOO is insensitive

to changes in the amount of habitat within each 2 × 2
km grid cell.

Red List Assessment

Under criterion A2, population changes should be calcu-
lated over 3 generations or 10 years, whichever is longer.
Currently, ESA land-cover maps are available for 1992–
2015. We took 2015 as the present and identified the start
point for estimating trends as 3 generations or 10 years
prior to 2015, whichever was earlier. If the 3-generation
period was longer than 24 years, we calculated the
change from 1992 and normalized the change as

%change= %change (2015−1992) · 3generations

24 years
. (1)

Generation length data for all bird and mammal species
were obtained from BirdLife International (2017b) and
Pacifici et al. (2013), respectively.

Criteria B1 and B2 were applied by comparing the EOO
and ESH estimates with the EOO and AOO thresholds,
respectively (Fig. 1 & Supporting Information). However,
the application of these 2 criteria requires at least 2
subcriteria to be met. We considered subcriterion a
(severe fragmentation) and biii (continuing decline in
area, extent, and quality of habitat or quality of habitat).
Severe fragmentation is defined by the IUCN Red List
as occurring when “increased extinction risks to the
taxon results from the fact that most of its individuals are
found in small and relatively isolated subpopulations”
(IUCN 2017b). Accordingly, we considered species’
habitat to be fragmented if >50% of the ESH occurred
in small and isolated patches (IUCN 2017b). Small is not
defined, and varies between species according to their
typical population density and other characteristics. We
therefore tested multiple criteria, with small defined
as fragments <100 km2; fragments supporting <100,
<500, <1000, or <5000 individuals according to our
population density models (Santini et al. 2018); or
fragments supporting less than a viable population size
according to Hilbers et al. (2016) based on viability targets
with 5 assumed proportions of the maximum population
growth rate (0.2, 0.4, 0.6, 0.8, or 1). Population viability
estimates are only available for mammals (Hilbers et al.
2016), so in total we tested 5 definitions for birds and
10 for mammals (Supporting Information). We defined
isolated following the approach described in Santini
et al. (2014). Briefly, the approach clusters habitat in
contiguous habitat fragments and then clumps those
fragments within a median dispersal distance (dispersal
distance estimation in Supporting Information). The
resulting clumps of habitat fragments are assumed to
support demographically semi-isolated populations.
Criteria C1 and D were applied by comparing population
size estimates and population trends (C1 only) with their
respective thresholds (Supporting Information).
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Figure 1. Schematic framework for prediction of species’ International Union for Conservation of Nature Red List
category. All IUCN Red List criteria are applied, but only the one(s) indicating the most threatened category are
used. Species that do not qualify as critically endangered (CR), endangered (EN), or vulnerable (VU) are classified
as nonthreatened (t1, 2015—the longest between 3 generations and 10 years; t2, 2015; additional requirements: ∗,
subcriterion a [severely fragmented range]; subcriterion b [continuing decline in area, extent, and/or quality of
habitat] must be met; ∗∗, decline is measured as continuing population decline �25% over 3 years or 1 generation
for CR, �20% over 5 years or 2 generations for EN, and �10% over 10 years or 3 generations for VU).

Because empirical population density and dispersal
distance estimates in bats are lacking and their den-
sity can be highly clumped in space due to the loca-
tion of roosting sites, we did not predict density and
dispersal in bats and classified them only under cri-
teria B1 and B2. Because of the intrinsic uncertainty
in the application of this criterion, we present the re-
sults considering fragmentation separately from the main
results.

Overall, we based our method on conservative
(optimistic) assumptions. First, we assumed the suitable
habitat (ESH) to be entirely occupied (AOO), knowing
that this is unrealistic. Second, our predicted abundance
estimates were applied to the entire ESH and, as specified
under criteria C and D, and are assumed to only represent
mature individuals, therefore likely overestimating the
number of these. Third, we assumed that fragmentation
results only from the size of habitat fragments and
their degree of isolation. Therefore our predictions are
expected to be more optimistic than published IUCN
Red List assessments based on empirical species-specific
data on average.

We compared predicted IUCN Red List categories
with published categories by testing the correlation
between ordinal values with Goodman and Kruskal’s
gamma statistics. We also compared the ability to de-
tect threatened and nonthreatened species with sensitiv-
ity, specificity, and true skill statistics (TSS) (Supporting
Information).

We conducted all GIS analyses with a Mollweide equal-
area projection in GRASS GIS version 7.4 (GRASS Devel-
opment Team 2017) and all further statistical analyses
and data processing in R version 3.5.1 (R Core Team

2018). The GRASS and R codes are available from the
corresponding author upon request.

Results

IUCN Red List Categories Predictions

We predicted 745 bird (399 VU, 254 EN, and 92 CR) and
501 mammal (266 VU, 206 EN, and 29 CR) species to be
threatened (Fig. 2). These species qualified as threatened
primarily under criterion B1 (53.3%, 393 birds and 348
mammals), B2 (23.4%, 165 birds and 161 mammals),
D/D1 (15%, 208 birds and 70 mammals), C1 (5.6%, 59
birds and 19 mammals), and A2 (2.7%, 25 bird and 12
mammals). Among data deficient species, we predicted
10 species of birds (18.9% of bird data deficient species)
and 114 of mammal species (22.3%) to be threatened
(birds: 5 VU, 3 EN, and 2 CR; mammals: 52 VU, 52 EN,
and 10 CR) (Fig. 3). Predictions for data deficient were
concordant with those produced by previous authors
using alternative methods for 76.2% of birds and 56.6%
of mammals (Supporting Information). Predictions for
all species are in Supporting Information.

Applying subcriterion B1a or B2a (severe fragmenta-
tion) substantially reduced the number of species quali-
fying under criteria B1 and B2 and hence the number of
species qualifying as threatened (3.3–5.1%). The extent
of this reduction depended on the quantitative definition
of fragmentation applied, but overall as the minimum
population size per fragment increased, the number of
species qualifying as threatened under criteria B1 and B2
decreased (Supporting Information).
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6 Towards an Automatic Red List Screening

Figure 2. Consistency between predicted and published IUCN Red List categories for birds and mammals (LC, least
concern; NT, near threatened; VU, vulnerable; EN, endangered; CR, critically endangered). Predictions make no
distinction between NT and LC because no quantitative explicit criterion threshold exists for NT.

Figure 3. Predicted IUCN Red List categories for data-deficient species (LC, least concern; NT, near threatened; VU,
vulnerable; EN, endangered; CR, critically endangered).

Comparison Between Predicted and Published IUCN Red List
Categories

Our predictions tended to be more optimistic but
fairly consistent with the IUCN Red List assessments
(Fig. 2). The correlation with the published IUCN Red
List categories was high; birds had a G-K gamma = 0.75
(p < 0.001) and mammals had a G-K gamma = 0.74
(p < 0.001). The sensitivity in predicting threatened
categories was low both in birds and mammals (0.29
and 0.27), and the specificity was high (0.95 and 0.96);
TSS was 0.24 for birds and 0.23 for mammals. These
values indicated a high type II error and low type
I error (i.e., high chance of classifying a threatened
species as nonthreatened, but low chance of classifying
a nonthreatened species as threatened).

For birds, 467 species (4.7%) were predicted to be in
higher (i.e., more threatened) IUCN Red List categories
and 990 species (10%) in lower IUCN Red List categories.
For mammals, 143 (3%) were predicted in higher IUCN
Red List categories and 862 (18.1%) in lower IUCN Red
List categories. Birds predicted to be more threatened
than on the IUCN Red List qualified as threatened under
criteria B1 (n = 276), D (n = 125), B2 (n = 99), C1 (n =
46), and A2 (n = 17). Mammals predicted to be in higher
IUCN Red List categories qualified as threatened under
B1 (n = 86), B2 (n = 52), D (n = 17), C1 (n = 7), and A2
(n = 2). The mismatches between our predictions and
published IUCN Red List assessments were taxonomically
biased, especially for mammals (Fig. 4). Bird species that
were consistently predicted to be less threatened than on

Conservation Biology
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Figure 4. Mean difference between published and predicted IUCN Red List categories by taxonomic order for birds
and mammals (least concern and near threatened = 0; vulnerable = 1; endangered = 2; critically endangered =
3). Positive values indicate predicted IUCN Red List categories are lower than current published categories on the
IUCN Red List. Error bars encompass 90% of the distribution of the differences.

the IUCN Red List were ground-dwelling species (e.g.,
Eurypygiformes, Mesitornithiformes, and Galliformes),
large-bodied species (e.g., Bucerotiformes, Ciconi-
iformes, and Otidiformes), and birds of prey (e.g., Accip-
itriformes), which are threatened by hunting, poisoning,
and collision with power lines and wind turbines. Mam-
mal species that were consistently predicted to be less
threatened than currently assessed on the IUCN Red List
were mostly large-bodied species and species threatened
by hunting and illegal trade (e.g., Proboscidea, Perisso-
dactyla, Cetartiodactyla, Pholidota, and Primates) (Fig. 4).

Among geographic regions, our models predicted
lower extinction risk on average in the Saharo–Arabian
and Australian region for birds, in the Madagascan and
the Oceanian regions for mammals, and in the Orien-
tal region for both birds and mammals. For mammals,
the northern part of Alaska and Greenland also showed
high values, but these areas are occupied by only a small
number of species (Fig. 5 & Supporting Information).
The difference between IUCN Red List assessments and
our predicted categories was positively correlated with
species’ body mass in birds and mammals (Supporting
Information), indicating that our approach is more likely
to underestimate the IUCN Red List categories of larger
species compared with those of smaller species. Finally,
the comparison between our predictions and published

assessments depended on the assumptions made for the
AOO and population size (Supporting Information). A
sensitivity analysis of the effect of these 2 parameters on
the predictions suggested that the number of threatened
species may be much higher than currently predicted
(Supporting Information).

Discussion

Our results demonstrate how data on land-cover change
coupled with information on species habitat preferences
and modeled abundance can inform species assessments
under the IUCN Red List. This procedure was particularly
useful in detecting species whose rate and degree of habi-
tat loss may have been underestimated. Further, it iden-
tified data-deficient species most likely to be threatened,
thus targeting research designed to gather sufficient
information to apply the IUCN Red List criteria. The same
procedure can be applied to other taxonomic groups
for which distributions have been mapped, habitat pref-
erences documented, and abundance predictions can
be made (e.g., Amphibians; Ficetola et al. 2015; Santini
et al. 2018). Our predictions were fairly consistent with
published IUCN Red List assessments, suggesting that the
procedure is reliable for preliminary species assessments.

Conservation Biology
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8 Towards an Automatic Red List Screening

Figure 5. Mean difference between published and predicted IUCN Red List categories for birds and mammals per
grid cell at 0.5° resolution (least concern and near threatened = 0; vulnerable = 1; endangered = 2; critically
endangered = 3; positive values, predicted categories are on average lower than published categories; gray, cells
with no difference on average, i.e., 0 values).

However, our approach also classified many species
in higher or lower IUCN Red List categories than their
published status, highlighting limitations and strengths
in both the IUCN Red List and our predictive method.

Most mismatches between published and predicted
status involved species predicted to be less threatened
than they are classified on the IUCN Red List. These mis-
matches include many species for which the assumption
of presence in suitable habitat is particularly overopti-
mistic because several factors other than habitat type
can determine their presence (Colwell & Rangel 2009).
For example, some species show clumped distributions
within suitable habitat due to the patchy distribution of
key resources (Mayor et al. 2009) or else shift nomadically
around their geographic range and thus occupy only a
limited part of it at any given time (Runge et al. 2015).
Similarly, some species are absent or rarer in areas subject
to particular threats, such as overexploitation, invasive
alien species, pollution, or human disturbance (Beńıtez-
López et al. 2010, 2017; Hoffmann et al. 2010; Ripple
et al. 2016). Pangolins (Pholidota), for instance, are the
most heavily trafficked mammals in the world and are
facing severe population declines due to overexploitation
in Asia and Africa. Pangolins can occur in a large vari-
ety of habitats, including primary and secondary tropical
forests, shrublands, and grasslands; therefore, their ESH
is large, yet their AOO is likely to be considerably smaller
(Ingram et al. 2017). Our predictions for small species
were more consistent with the IUCN Red List than those
for large species, probably because the latter are more
often threatened by direct exploitation, whereas smaller
species are more often threatened by habitat loss and
degradation (Ripple et al. 2017).

Our analysis revealed a consistent bias toward
underestimation of risk in the predictions and over-
estimation in the assessments for the Madagascan,
Oriental, and Oceanian regions in mammals, and in the
Oriental, Saharo–Arabian, and Australian regions in birds
(Fig. 5 & Supporting Information). These mismatches can

be explained by a combination of factors including high
hunting pressure (e.g., Oriental), threats from invasive
species (e.g., Australian and Oceanian), or climate change
(e.g., Saharo–Arabian) in these regions (Loarie et al. 2009;
Beńıtez-López et al. 2017; Spatz et al. 2017). Mismatches
between predictions and IUCN Red List assessments
appear to be larger and more taxonomically and
geographically biased in mammals (Fig. 4 & Supporting
Information). This may arise from underlying methods
because bird assessments are all performed by BirdLife
International, whereas mammal assessments are coordi-
nated by the Global Mammal Assessment but in effect
generated by the many specialist groups for different taxa
worldwide. This can result in inconsistencies between
different taxonomic groups, for example, in the appli-
cation of different criteria, use of different types of data
sources, or in evidentiary versus precautionary attitudes.

We consider our approach particularly useful for
species and regions that receive less research atten-
tion (Donaldson et al. 2016; Verde Arregoitia 2016; Di
Marco et al. 2017) because they are often assessed by a
small number of experts based on a limited amount of
data collated from old publications or anecdotal infor-
mation. For example, the Polar Bear Specialist Group
has 25 members (http://pbsg.npolar.no/en/), whereas
the Small Mammals Specialist Group, which overall cov-
ers around >2800 species, has around 120 members
(http://www.small-mammals.org/). This inevitably influ-
ences the quality of the assessments. Overall, most
species on the IUCN Red List are not assessed against
all criteria, owing to lack of data (IUCN 2017b).

Although considering only 1 or a few criteria allows
poorly known species to be assessed, it also makes the
IUCN Red List sensitive to data availability. In fact, species
assessed against more criteria are more likely to be clas-
sified as threatened. Because we simultaneously assessed
species under 5 different criteria that are based on up-
to-date remote-sensing information, it is possible that our
approach identifies species that are genuinely threatened
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at present, but have not yet been assessed as such on the
IUCN Red List. For example, many species that could be
classified as threatened based on B1 (i.e., EOO smaller
than the required thresholds) are not classified as such
on the IUCN Red List because they are considered to have
stable population trends (subcriterion biii). However, we
classified some of these as threatened under B1 because
land-cover data indicated that they have lost habitat over
the last 10 years or 3 generations. Two examples are
the Northern Ground-hornbill (Bucorvus abyssinicus)
and the Ethiopian striped mouse (Muriculus imberbis),
which are poorly known and have restricted geographical
ranges but are believed to be stable in terms of distribu-
tion and population size. Both species are currently clas-
sified as LC, but our models predicted that they have un-
dergone a severe decline in ESH and population size and
should therefore qualify as EN (Supporting Information).
Review of the IUCN Red List assessments for species such
as these are now warranted and should involve targeted
efforts to compile up-to-date information on their status.

A useful application of our approach is the preliminary
assessment of data deficient species. Although there are
few data deficient birds (0.6% of species), around 14%
of mammal species are classified as data deficient. Our
approach identified several species in urgent need of
conservation attention, such as the Brown-banded Rail
(Lewinia mirifica) and Williamson’s mouse-deer (Trag-
ulus williamsoni), which were predicted to be CR by
our models. Our predictions for data deficient species
were fairly consistent with those based on expert judg-
ment and machine-learning algorithms (Supporting In-
formation; Butchart & Bird 2010; Bland et al. 2015). Our
approach mostly relies on changes in habitat availability
over time, while Bland et al. (2015) primarily focused
on species’ intrinsic vulnerability to extinction; therefore
these 2 approaches offer different, and complementary,
perspectives on identifying species that require urgent
monitoring and targeted research.

The number of species qualifying as threatened
in our analyses was substantially reduced when the
fragmentation subcriterion was applied, depending
on the threshold used to define small fragments. This
raises the issue that the IUCN definition of habitat
fragmentation is qualitative and can be interpreted
in different ways (IUCN 2017b). As a consequence,
the fragmentation subcriterion is typically applied
based on expert opinion, which may imply that many
species currently listed under criterion B should not be
considered as threatened. Our operative interpretation
of the definition allows this criterion to be applied more
objectively and consistently across species (Santini et al.
2014; Di Marco et al. 2016), but it is also sensitive to the
land-cover data resolution, which may be inappropriate
for many species and ignores the effect of barriers.
This may result in excessively conservative assessments,
perhaps explaining the reduced number of a species

qualifying under this subcriterion. We therefore urge
IUCN to provide more explicit guidance on how to apply
this subcriterion more objectively and consistently,
including through quantitative approaches such as ours.

Our results show how the Red List framework can be
applied using land-cover maps coupled with information
on habitat preferences and spatially explicit abundance
models. Because this approach tends to underestimate
species extinction risk, it implies that any species pre-
dicted to be more at risk than currently classified should
be urgently reassessed. We propose that this approach
be integrated into IUCN Red List assessments to reduce
taxonomic and spatial biases and to address constraints
in data availability. More importantly, as periodic updates
of automatically processed satellite images become avail-
able, our approach can be automated to provide an early-
warning system to identify species potentially warranting
urgent conservation actions.
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