1,512 research outputs found
Peculiarities of gamma-quanta distribution at 20 TeV energy
The angular distribution of protons from the fragmentational region is analyzed. The gamma-quanta families are generated in a dense target by cosmic ray particles at 20 Tev energy. Families were found which had dense groups (spikes) of gamma-quanta where the rapidity/density is 3 times more than the average value determined for all registered families. The experimental data is compared with the results of artificial families simulation
Fast atomic transport without vibrational heating
We use the dynamical invariants associated with the Hamiltonian of an atom in
a one dimensional moving trap to inverse engineer the trap motion and perform
fast atomic transport without final vibrational heating. The atom is driven
non-adiabatically through a shortcut to the result of adiabatic, slow trap
motion. For harmonic potentials this only requires designing appropriate trap
trajectories, whereas perfect transport in anharmonic traps may be achieved by
applying an extra field to compensate the forces in the rest frame of the trap.
The results can be extended to atom stopping or launching. The limitations due
to geometrical constraints, energies and accelerations involved are analyzed,
as well as the relation to previous approaches (based on classical trajectories
or "fast-forward" and "bang-bang" methods) which can be integrated in the
invariant-based framework.Comment: 10 pages, 5 figure
Social hate: the features of modern extremist
The article presents some specific characteristics of political extremist’s personality. The authors present that having deep psychological clashes extremists very often transfer it to the external world and design the destabilization of social and political life of separate countries and regions. As a result they provoke the conflicts and hostility in the relationships between state power and the people.В докладе раскрываются некоторые особенности личности политического экстремиста. Показано, что испытывая глубокие психологические коллизии, экстремисты очень часто переносят их во внешний мир, проектируя дестабилизацию общественно-политической жизни отдельных стран и регионов. И вносят конфликты и вражду во взаимоотношения государственной власти с населением
Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities
Using Lie group theory and canonical transformations we construct explicit
solutions of nonlinear Schrodinger equations with spatially inhomogeneous
nonlinearities. We present the general theory, use it to show that localized
nonlinearities can support bound states with an arbitrary number solitons and
discuss other applications of interest to the field of nonlinear matter waves
Resonant enhancement of the jump rate in a double-well potential
We study the overdamped dynamics of a Brownian particle in the double-well
potential under the influence of an external periodic (AC) force with zero
mean. We obtain a dependence of the jump rate on the frequency of the external
force. The dependence shows a maximum at a certain driving frequency. We
explain the phenomenon as a switching between different time scales of the
system: interwell relaxation time (the mean residence time) and the intrawell
relaxation time. Dependence of the resonant peak on the system parameters,
namely the amplitude of the driving force A and the noise strength
(temperature) D has been explored. We observe that the effect is well
pronounced when A/D > 1 and if A/D 1 the enhancement of the jump rate can be of
the order of magnitude with respect to the Kramers rate.Comment: Published in J. Phys. A: Math. Gen. 37 (2004) 6043-6051; 6 figure
Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks
A comparative study is performed on two heterodyne systems of photon
detectors expressed in terms of a signal annihilation operator and an image
band creation operator called Shapiro-Wagner and Caves' frame, respectively.
This approach is based on the introduction of a convenient operator
which allows a unified formulation of both cases. For the Shapiro-Wagner
scheme, where , quantum phase and amplitude
are exactly defined in the context of relative number state (RNS)
representation, while a procedure is devised to handle suitably and in a
consistent way Caves' framework, characterized by , within the approximate simultaneous measurements of
noncommuting variables. In such a case RNS phase and amplitude make sense only
approximately.Comment: 25 pages. Just very minor editorial cosmetic change
- …
