143 research outputs found

    Activation of Bone Marrow-Derived Cells Angiotensin (Ang) II Type 1 Receptor by Ang II Promotes Atherosclerotic Plaque Vulnerability.

    Get PDF
    Angiotensin (Ang) II triggers vulnerable atherosclerotic plaque development. Bone marrow (BM)-derived cells are key players in atherogenesis but whether Ang II induces plaque vulnerability directly through Ang II type 1 receptor (AT1R) activation on these cells remains to be clarified. In the present study, we investigated whether a lack of AT1R on BM-derived cells might affect Ang II-mediated vulnerable plaque development. The 2-kidney, 1-clip (2K1C) model (Ang II-dependent mouse model of advanced atherosclerosis and vulnerable plaques) was generated in ApoE <sup>-/-</sup> mice transplanted with AT1aR <sup>-/-</sup> or AT1aR <sup>+/+</sup> BM. Plasma cholesterol as well as hepatic mRNA expression levels of genes involved in cholesterol metabolism were significantly lower in 2K1C mice transplanted with AT1aR <sup>-/-</sup> BM than in controls. Atherosclerotic lesions were significantly smaller in AT1aR <sup>-/-</sup> BM 2K1C mice (-79% in the aortic sinus and -71% in whole aorta compared to controls). Plaques from AT1aR <sup>-/-</sup> BM 2K1C mice exhibited reduced lipid core/fibrous cap and macrophage/smooth muscle cells ratios (-82% and -88%, respectively), and increased collagen content (+70%), indicating a more stable phenotype. Moreover, aortic mRNA levels of pro-inflammatory cytokines IL-12p35, IL-1β, and TNF-α were significantly reduced in AT1aR <sup>-/-</sup> BM 2K1C mice. No significant differences in either the number of circulating Ly6C <sup>high</sup> inflammatory monocytes and Ly6C <sup>low</sup> resident anti-inflammatory monocyte subsets, or in mRNA levels of aortic M1 or M2 macrophage markers were observed between the two groups. No significant differences were observed in splenic mRNA levels of T cell subsets (Th1, Th2, Th17 and Treg) markers between the two groups. In conclusion, direct AT1R activation by Ang II on BM-derived cells promotes hepatic mRNA expression of cholesterol-metabolism-related genes and vascular mRNA expression of pro-inflammatory cytokines that may lead to plaque instability

    A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies.

    Get PDF
    BACKGROUND: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. METHODS: GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. RESULTS: GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. CONCLUSION: These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies

    Transfer of human systemic lupus erythematosus in severe combined immunodeficient (SCID) mice

    Get PDF
    To study the role of peripheral blood leukocytes (PBL) in the pathogenesis of human systemic lupus erythematosus (SLE), we transferred PBL from 5 SLE patients into 15 severe combined immunodeficiency (SCID) mice. Such reconstituted mice showed long-term presence of auto-antibodies characteristic of the donor in their sera, as well as human immunoglobulin deposition, and in some cases mouse C3, in the renal glomeruli. SCID mice repopulated with PBLs from normal donors do not develop serologic abnormalities or immunodeposits. It is concluded that human SLE serology and some associated renal changes can be reproduced solely by PBL transferred from afflicted patients, and that SCID-human-SLE mice may serve as an in vivo laboratory model for the study of human SLE

    Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents.

    Get PDF
    Genomic instability plays a pathological role in various malignancies, including acute myeloid leukemia (AML), and thus represents a potential therapeutic target. Recent studies demonstrate that SIRT6, a NAD <sup>+</sup> -dependent nuclear deacetylase, functions as genome-guardian by preserving DNA integrity in different tumor cells. Here, we demonstrate that also CD34 <sup>+</sup> blasts from AML patients show ongoing DNA damage and SIRT6 overexpression. Indeed, we identified a poor-prognostic subset of patients, with widespread instability, which relies on SIRT6 to compensate for DNA-replication stress. As a result, SIRT6 depletion compromises the ability of leukemia cells to repair DNA double-strand breaks that, in turn, increases their sensitivity to daunorubicin and Ara-C, both in vitro and in vivo In contrast, low SIRT6 levels observed in normal CD34 <sup>+</sup> hematopoietic progenitors explain their weaker sensitivity to genotoxic stress. Intriguingly, we have identified DNA-PKcs and CtIP deacetylation as crucial for SIRT6-mediated DNA repair. Together, our data suggest that inactivation of SIRT6 in leukemia cells leads to disruption of DNA-repair mechanisms, genomic instability and aggressive AML. This synthetic lethal approach, enhancing DNA damage while concomitantly blocking repair responses, provides the rationale for the clinical evaluation of SIRT6 modulators in the treatment of leukemia

    A novel potent Fas agonist for selective depletion of tumor cells in hematopoietic transplants

    Get PDF
    There remains a clear need for effective tumor cell purging in autologous stem cell transplantation (ASCT) where residual malignant cells within the autograft contribute to disease relapse. Here we propose the use of a novel Fas agonist with potent pro-apoptotic activity, termed MegaFasL, as an effective ex-vivo purging agent. MegaFasL selectively kills hematological cancer cells from lymphomas and leukemias and prevents tumor development at concentrations that do not reduce the functional capacity of human hematopoietic stem/progenitor cells both in in vitro and in in vivo transplantation models. These findings highlight the potential use of MegaFasL as an ex-vivo purging agent in ASCT

    Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.

    Get PDF
    Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis

    Haematopoietic cell transplantation in Switzerland, changes and results over 20 years: a report from the Swiss Blood Stem Cell Transplantation Working Group for Blood and Marrow Transplantation registry 1997-2016.

    Get PDF
    In 1997, the Swiss Blood Stem Cell Transplantation Group (SBST) initiated a mandatory national registry for all haematopoietic stem cell transplants (HCTs) in Switzerland. As of 2016, after 20 years, information was available for 7899 patients who had received an HCT (2781 allogeneic [35%] and 5118 autologous [65%]). As some patients had more than one transplant the total number of transplants was 3067 allogeneic and 6448 autologous. We compared patient characteristics and outcome of the first decade (1997-2006) and second decade (2007-2016) of the registry. There were numerous changes over time. For allogeneic HCT, transplant rates, and therefore use of HCT technology, increased from 14 to 21.8 HCTs per 1 million inhabitants per year from the first to the second decade. Likewise autologous HCTs increased from 24.8 to 37.2 annually corrected for population growth. Allogeneic transplant recipients were older (38.4 vs 48.3 years) and more frequently had unrelated donors in the second decade. Similarly, age increased for recipients of autologous HCT (50.8 vs 56.4 years). Analysis of outcome showed that the probabilities of overall and progression-free survival were stable over time, in spite of the treatment of older and higher risk patients. In multivariate analysis, nonrelapse mortality decreased in recipients of allogeneic HCT (relative risk 0.68, 95% confidence interval 0.52-0.87) over the two decades. Improvement in adjusted nonrelapse mortality compensated for the fact that higher risk patients were treated in more recent years, resulting in similar overall survival. Five-year survival probabilities were 56% (53-59%) in the first and 54% (51-57%) in the second decade for allogeneic HCT, and 59% (57-61%) in the first and 61% (59-63%) in the second decade for autologous HCT. Detailed analyses of changes over time are presented. This study included all HCTs performed in Switzerland during the period of observation and the data are useful for quality assurance programmes, healthcare cost estimation and healthcare planning. Between 50 and 60% of patients were long-term survivors after both types of HCT, indicating growing populations of surviving patients requiring long-term care and observation

    Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability

    Get PDF
    Imatinib has revolutionised the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GIST). Using a nonlinear mixed effects population model, individual estimates of pharmacokinetic parameters were derived and used to estimate imatinib exposure (area under the curve, AUC) in 58 patients. Plasma-free concentration was deduced from a model incorporating plasma levels of alpha1-acid glycoprotein. Associations between AUC (or clearance) and response or incidence of side effects were explored by logistic regression analysis. Influence of KIT genotype was also assessed in GIST patients. Both total (in GIST) and free drug exposure (in CML and GIST) correlated with the occurrence and number of side effects (e.g. odds ratio 2.7±0.6 for a two-fold free AUC increase in GIST; P<0.001). Higher free AUC also predicted a higher probability of therapeutic response in GIST (odds ratio 2.6±1.1; P=0.026) when taking into account tumour KIT genotype (strongest association in patients harbouring exon 9 mutation or wild-type KIT, known to decrease tumour sensitivity towards imatinib). In CML, no straightforward concentration–response relationships were obtained. Our findings represent additional arguments to further evaluate the usefulness of individualising imatinib prescription based on a therapeutic drug monitoring programme, possibly associated with target genotype profiling of patients
    corecore