152 research outputs found

    Ovaries of Tubificinae (Clitellata, Naididae) resemble ovary cords found in Hirudinea (Clitellata)

    Get PDF
    The ultrastructure of the ovaries and oogenesis was studied in three species of three genera of Tubificinae. The paired ovaries are small, conically shaped structures, connected to the intersegmental septum between segments X and XI by their narrow end. The ovaries are composed of syncytial cysts of germ cells interconnected by stable cytoplasmic bridges (ring canals) and surrounded by follicular cells. The architecture of the germ-line cysts is exactly the same as in all clitellate annelids studied to date, i.e. each cell in a cyst has only one ring canal connecting it to the central, anuclear cytoplasmic mass, the cytophore. The ovaries found in all of the species studied seem to be meroistic, i.e. the ultimate fate of germ cells within a cyst is different, and the majority of cells withdraw from meiosis and become nurse cells; the rest continue meiosis, gather macromolecules, cell organelles and storage material, and become oocytes. The ovaries are polarized; their narrow end contains mitotically dividing oogonia and germ cells entering the meiosis prophase; whereas within the middle and basal parts, nurse cells, a prominent cytophore and growing oocytes occur. During late previtellogenesis/early vitellogenesis, the oocytes detach from the cytophore and float in the coelom; they are usually enveloped by the peritoneal epithelium and associated with blood vessels. Generally, the organization of ovaries in all of the Tubificinae species studied resembles the polarized ovary cords found within the ovisacs of some Euhirudinea. The organization of ovaries and the course of oogenesis between the genera studied and other clitellate annelids are compared. Finally, it is suggested that germ-line cysts formation and the meroistic mode of oogenesis may be a primary character for all Clitellata

    Pyrido- and benzisothiazolones as inhibitors of histone acetyltransferases (HATs)

    Get PDF
    Histone acetyltransferases (HATs) are interesting targets for the treatment of cancer and HIV infections but reports on selective inhibitors are very limited. Here we report structure–activity studies of pyrido- and benzisothiazolones in the in vitro inhibition of histone acetyltransferases, namely PCAF, CBP, Gcn5 and p300 using a heterogeneous assay with antibody mediated quantitation of the acetylation of a peptidic substrate. Dependent on the chemical structure distinct subtype selectivity profiles can be obtained. While N-aryl derivatives usually are rather pan-HAT inhibitors, N-alkyl derivatives show mostly a preference for CBP/p300. Selected compounds were also shown to be inhibitors of MOF. The best inhibitors show submicromolar inhibition of CBP. Selected compounds affect growth of HL-60 leukemic cells and LNCaP prostate carcinoma cells with higher potency on the leukemic cells. Target engagement was shown with reduction of histone acetylation in LNCaP cells

    Taxonomic classification of algae by the use of chlorophyll a fluorescence

    Full text link
    Natural water reservoirs are very important ecosystems thus they should be under continuous monitoring and protection. In water of low quality, the algal blooms develop develops vastly. The knowledge of algal species composition is necessary for understanding this process. There are a few traditional group-specific methods of microalgae classification, but they are often labour-intense and time-consuming. Moreover, the samples must be prepared and/or collected before getting any results. Non-invasive chlorophyll fluorescence analysis offers an alternative approach and potentially allows in situ estimation of algal concentration. In this work the fluorometric methods to estimate algae content in water and to differentiate algal populations is presented

    The activity of hydrolytic enzymes in the digestive system of Acanthobdellida, Branchiobdellida and Hirudinida (Annelida,Clitellata) – considerations on similarity and phylogeny

    Get PDF
    Activities of nineteen hydrolases were measured in the digestive systems of predatory and blood-feeding true leeches (Hirudinida) and their closest relatives, Branchiobdellida and Acanthobdellida. Hydrolase activities were analyzed in different parts of the digestive systems: the species-specific anterior part, i.e. jaws, pharynx or proboscis, crop and intestine. The results obtained suggest that food digestion and possible absorption predominate in the intestine of most of the studied Hirudinida and A. peledina, whereas in B. astaci these processes take place in the anterior part of the digestive system and crop. In Erpobdellidae and Piscicola respirans, the activity of acid and alkaline phosphatases, N-acetyl-β-glucosaminidase, leucine and valine arylamidases, and α-fucosidase was also detected in the anterior part of the digestive system. We also detected differences in enzyme occurrence between the studied species, which are probably connected with their different food preferences. Moreover, the presence of the whole spectrum of enzymes in predatory leeches and the absence of trypsin and α-chymotrypsin activity in the crop of all the leeches support the hypothesis that the leech ancestor was a blood-feeder. Our study showed that “Rhynchobdellida” constitute a paraphyletic group which confirms the previous results based on molecular phylogenetics, while Arhynchobdellida appears to be a non-monophyletic group which is not consistent with previous molecular results

    Actin cytoskeleton in the extra-ovular embryo sac of Utricularia nelumbifolia (Lentibulariaceae)

    Get PDF
    The actin cytoskeleton in the mature female gametophyte of angiosperms has been examined in only a few dicot and monocot species. The main purposes of this study were to identify how the actin cytoskeleton is arranged in the mature extra-ovular embryo sac in Utricularia nelumbifolia (Lentibulariaceae). We found that the extra-ovular part of the central cell has a well-developed actin cytoskeleton: actin microfilaments formed of long strands which run longitudinally or transversally to the long axis of the embryo sac. The exerted part of the central cell, which is exposed to the environment of the ovary chamber, is highly vacuolated and in the thin peripheral cytoplasm possesses a complicated network of actin microfilaments. The epidermal cells of the placenta that are in contact with the extra-ovular part of the embryo sac are crushed. The ultrastructure data of these cells are presented. We detected the accumulation of the actin cytoskeleton between the micropylar parts of the synergids and the extra-ovular part of central cell. This actin accumulation is unusual because in typical angiosperms the micropylar parts of the synergids form the apex of the female gametophyte

    The F-actin cytoskeleton in syncytia from non-clonal progenitor cells

    Get PDF
    The actin cytoskeleton of plant syncytia (a multinucleate cell arising through fusion) is poorly known: to date, there have only been reports about F-actin organization in plant syncytia induced by parasitic nematodes. To broaden knowledge regarding this issue, we analyzed F-actin organization in special heterokaryotic Utricularia syncytia, which arise from maternal sporophytic tissues and endosperm haustoria. In contrast to plant syncytia induced by parasitic nematodes, the syncytia of Utricularia have an extensive F-actin network. Abundant F-actin cytoskeleton occurs both in the region where cell walls are digested and the protoplast of nutritive tissue cells fuse with the syncytium and also near a giant amoeboid in the shape nuclei in the central part of the syncytium. An explanation for the presence of an extensive F-actin network and especially F-actin bundles in the syncytia is probably that it is involved in the movement of nuclei and other organelles and also the transport of nutrients in these physiological activity organs which are necessary for the development of embryos in these unique carnivorous plants. We observed that in Utricularia nutritive tissue cells, actin forms a randomly arranged network of F-actin, and later in syncytium, two patterns of F-actin were observed, one characteristic for nutritive cells and second—actin bundles—characteristic for haustoria and suspensors, thus syncytia inherit their F-actin patterns from their progenitors

    Synergids and filiform apparatus in the sexual and apomictic dandelions from section Palustria (Taraxacum, Asteraceae)

    Get PDF
    An evolutionary trend to reduce “unnecessary costs” associated with the sexual reproduction of their amphimictic ancestors, which may result in greater reproductive success, has been observed among the obligatory apomicts. However, in the case of the female gametophyte, knowledge about this trend in apomicts is not sufficient because most of the ultrastructural studies of the female gametophyte have dealt with amphimictic angiosperms. In this paper, we tested the hypothesis that, in contrast to amphimictic plants, synergids in apomictic embryo sacs do not form a filiform apparatus. We compared the synergid structure in two dandelions from sect. Palustria: the amphimictic diploid Taraxacum tenuifolium and the apomictic tetraploid, male-sterile Taraxacum brandenburgicum. Synergids in both species possessed a filiform apparatus. In T. brandenburgicum, both synergids persisted for a long time without any degeneration, in spite of the presence of an embryo and endosperm. We propose that the persistent synergids in apomicts may play a role in the transport of nutrients to the embryo
    corecore