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Abstract
Let f be a preserving orientation circle homeomorphism with infinite number of
break points, i.e., the points at which the derivative of f has jumps, and finite number
of singular points, i.e., the points xi , i = 1, 2, . . . ,n, such that f ′(xi) =∞, i = 1, 2, . . . ,n.
Then the cross-ratio inequality with respect to f holds.
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1 Introduction
Let S = R/Z with clearly defined orientation, metric, Lebesgue measure and the operation
of addition be the unit circle. Let π : R → S denote the corresponding projection mapping
that ‘winds’ a straight line on the circle. An arbitrary homeomorphism f that preserves
the orientation of the unit circle S can be ‘lifted’ on the straight line R in the form of the
homeomorphism F : R → R with property F(x + ) = F(x) +  that is connected with f by
relation π ◦ F = f ◦ π . This homeomorphism F is called the lift of the homeomorphism f
and is defined up to an integer term. The most important arithmetic characteristic of the
homeomorphism f of the unit circle S is the rotation number

ρ(f ) = lim
n→∞

Fn(x)
n

mod ,

where F is the lift of f with S to R. Here and below, for a given map F , Fn denotes its nth
iterate. The rotation number is rational if and only if f has periodic points (see []). We say
two circle maps f and g are topologically conjugate if there exists a homeomorphism ϕ :
S → S such that f = ϕ– ◦ g ◦ϕ. The map ϕ is called conjugating map or just conjugation.
If f and g are conjugate, many of their properties are the same, e.g., the possible types of
the orbits of the points of S under f and under g are the same, the rotation number of f
is equal to that of g , etc.

Early results about the existence of conjugacy to the linear rotation fρ : x → x + ρ mod 
are the following theorems.

Poincaré’s theorem [] Let f be a circle homeomorphism with irrational rotation num-
ber ρ . Then f is semi-conjugate to the rotation fρ .
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Denjoy’s theorem [] A circle diffeomorphism f with irrational rotation number ρ and
log Df of bounded variation is topologically conjugate to the linear rotation fρ .

Denjoy’s result has been extended for different classes of circle homeomorphisms. In-
depth results have been found, see [–]. Two well-known classes of these are the follow-
ing.

P-homeomorphisms. These are orientation preserving circle homeomorphisms f dif-
ferentiable except in many countable points called break points admitting left and right
derivatives (denoted by f ′

– and f ′
+ respectively) such that

• there exist some constants  < γ < ζ < ∞ such that γ < f ′(x) < ζ for all x ∈ S \ BP(f ),
γ < f ′

+(b) < ζ and γ < f ′
–(b) < ζ for all b ∈ BP(f ), where BP(f ) denotes the set of the

break points of f ;
• log f ′ has bounded variation. In this situation log f ′, log f ′

–, log f ′
+ and log(f –)′,

log(f –
– )′, log(f –

+ )′ have the same total variation denoted by V = Var log f ′.
The ratio σf (b) = (f–(b))′/(f+(b))′ is called jump ratio of f in b.

Critical circle homeomorphisms. These are orientation preserving C circle maps f such
that for each x ∈ S there exist α ≥ , a neighborhood U(x) of x, and a homeomorphism
φ : U(x) → R such that φ(x) = , and if α >  then f (x) = ±|φ(x)|α + f (x), ∀x ∈ U(x) if
α =  then f (x) = |φ(x)|α + f (x), ∀x ∈ U(x).

For the class of P-homeomorphisms, the classical result of Denjoy can be easily ex-
tended, the existence of the conjugating map for this class was proved by Herman in [].
The existence of the conjugating map for the class of critical real analytic circle maps was
proved by Yoccoz [] and extended by Świątek [, ]. In these works the existence of con-
jugation was shown by estimating cross-ratio distortions (i.e., proving cross-ratio inequal-
ity). Note that the cross-ratio distortions were used in dynamical systems for the first time
by Yoccoz []. The cross-ratio distortions are the most powerful tools to study the exis-
tence and smoothness of a conjugating map for the critical circle homeomorphisms.

Our aim in this work is to prove the cross-ratio inequality for a new class of circle home-
omorphisms, which will be defined below with the aid of the above two classes and to show
the existence of a conjugating map for this new class. We shall talk about the cross-ratio
distortions in the next section.

Now we define the new class of circle homeomorphisms as follows.
(i) f is a preserving orientation circle homeomorphism on S.

(ii) There are points xi ∈ S and αi ∈ (, ), i = , , . . . , n, such that
f (x) = (x – xi)αi + f (xi) for some εi-neighborhoods of each xi.

(iii) f is a P-homeomorphism on S \ ⋃n
i= Uεi (xi).

Note that it follows from condition (ii) that f ′(xi) = ∞, i = , , . . . , n.

2 Cross-ratio inequality
Now we equip S with the usual metric |x – y| = inf{|̃x – ỹ|, where x̃, ỹ range over the lifts
of x, y ∈ S respectively}. Our main analytic tools are ratio and cross-ratio distortions (see
[]). Let a, b, c, d ∈ S be the four points of the circle which preserve orientation; that is,
a ≺ b ≺ c ≺ d ≺ a on the circle. We define the cross-ratio of these points as

Cr(a, b, c, d) =
|c – b||d – a|
|b – a||d – c| .
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If f is a continuous and monotone function on S, then the distortion of the cross-ratio by
this function is defined by

Dcr(a, b, c, d; f ) =
Cr(f (a), f (b), f (c), f (d))

Cr(a, b, c, d)
. ()

Moreover, if f is a C diffeomorphism, then taking limit from () when b → a and c → d,
we get the following distortion:

R(a, d; f ) =
(f (d) – f (a))

(d – a) · 
f ′(a)f ′(d)

. ()

Notice that the cross-ratio distortion is multiplicative with respect to composition for
two functions f and g on S, that is,

R(a, d; f ◦ g) = R
(
g(a), g(d); f

) · R(a, d; g).

The main results of this paper are the following theorems.

Theorem . Let f be a circle homeomorphism with irrational rotation number satisfying
conditions (i)-(iii). Consider a system of intervals {(ai, bi) ⊂ S, i = , , . . . , k}. Suppose that
this system of intervals covers each point of the circle S at most p times. Then there exists
a constant C = C(p, f ) which depends on p and f such that the following inequality

k∏

i=

R(ai, bi; f ) ≤ C ()

holds.

Inequality () is called cross-ratio inequality with respect to f . As an application of this
theorem, we provide the following second result of this paper.

Theorem . Let f be a circle homeomorphism with irrational rotation number satisfying
conditions (i)-(iii) without break points. Then there exists a circle homeomorphism ϕ such
that the following equality

ϕ ◦ f = fρ ◦ ϕ

holds.

In the proof of the second main theorem, we use the properties of a dynamical partition,
and therefore we introduce this concept.

3 Dynamical partition of the circle
Given a circle homeomorphism f with irrational rotation number ρ , one may consider a
positive marked trajectory (i.e., the positive trajectory of a marked point) ξi = f i(ξ) ∈ S,
where i ≥ , and pick out of it the sequence of the dynamical convergents ξqn , n ≥ . We
will also conventionally use ξq– = ξ – . The well-understood arithmetical properties of
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rational convergents and the combinatorial equivalence between f and linear rotation fρ
imply that the dynamical convergents approach the marked point alternating their order
in the following way:

ξq– < ξq < ξq < · · · < ξqm+ < · · · < ξ < · · · < ξqm < · · · < ξq < ξq .

For the marked trajectory, we use the notations In
 = In

 (ξ) and In
i = f i(In

 ), where In
 (ξ)

is the nth generator interval. It is well known that the set of intervals Pn = Pn(ξ, f ) with
mutually disjoint interiors defined as

Pn =
{

In–
i ,  ≤ i < qn; In

j ,  ≤ j < qn–
}

()

determines a partition of the circle for any n. The partition Pn is called the nth dynamical
partition of S. Obviously the partition Pn+ is a refinement of the partition Pn: indeed
the intervals of order n are members of Pn+ and each interval In–

i ∈ Pn,  ≤ i < qn, is
partitioned into kn+ +  intervals belonging to Pn+ such that

In–
i = In+

i ∪
kn+–⋃

s=

In
i+qn–+sqn . ()

4 Proof of the main results
In this section, first we prove few lemmas, and then using these lemmas we give the proof
of the main results. Note that the first main theorem is proved in a similar way as that of
[].

Lemma . Let f be a circle homeomorphism with irrational rotation number satisfying
conditions (i)-(iii). Consider a system of intervals {(ai, bi) ⊂ S, i = , , . . . , k}. Suppose that
this system of intervals covers each point of the set S \ ⋃n

i= Uεi (xi) at most p times. Then
there exists a constant C = C(p, f ) which depends on p and f such that the following in-
equality

k∏

i=

R(ai, bi; f ) ≤ C

holds.

Proof Since f is a P-homeomorphism on the set S \ ⋃n
i= Uεi (xi) for any interval (ai, bi),

we have

∣
∣log R(ai, bi; f )

∣
∣ ≤  sup

x,y∈[ai ,bi]

∣
∣log f ′(x) – log f ′(y)

∣
∣ ≤  Var

[ai ,bi]
log f ′.

Using this inequality, we get

∣
∣
∣
∣
∣
log

k∏

i=

R(ai, bi; f )

∣
∣
∣
∣
∣
≤

k∑

i=

∣
∣log R(ai, bi; f )

∣
∣ ≤ 

k∑

i=

Var
[ai ,bi]

log f ′.
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By assumption, the system of intervals F := {[ai, bi], i = , , . . . , k} covers each point of
the set S \ ⋃n

i= Uεi (xi) at most p times. Now we describe this system of intervals as a
union of subsystems of Fj, j ≤ p, in the following way: first we take [a, b] as an element
of F, then consider the intersection [a, b] ∩ [a, b]; if this intersection is empty, then
we count the interval [a, b] is an element of F, otherwise we count an element of F.
Next, consider F ∩ [a, b] (here and below the intersection with each element of F is
considered); if it is empty, we count [a, b] is an element of F, otherwise we check the
intersection F ∩ [a, b]. Again if F ∩ [a, b] is empty, we count [a, b] is an element
of F, otherwise we count [a, b] is an element of F. Continuing this process we get all
Fj, j ≤ p. By construction of subsystems Fj, j ≤ p of F , the elements of each subsystem do
not intersect with each other and F =

⋃
j Fj, j ≤ p. Therefore

k∑

i=

Var
[ai ,bi]

log f ′ =
∑

j

∑

[ai ,bi]∈Fj

Var
[ai ,bi]

log f ′ ≤ pV ,

where V = VarS\⋃n
i= Uεi (xi) log f ′. �

Lemma . Let f be a circle homeomorphism with irrational rotation number satisfying
conditions (i)-(iii) with one singular point xi∗ ∈ S and corresponding αi∗ ∈ (, ). Then, for
any interval (a, b) ⊂ S, there is a constant C = C(f ) which depends on f such that

R(a, b; f ) =
(f (b) – f (a))

(b – a) · 
f ′(a)f ′(b)

≤ C.

Proof Denote by E = S \ (xi∗ – εi∗
 , xi∗ + εi∗

 ) and V = (xi∗ – εi∗ , xi∗ + εi∗ ). Consider the fol-
lowing three cases:

() (a, b) ⊂ E;
() (a, b) ⊂ V ;
() neither () nor ().

If (a, b) ⊂ E then it is easy to get that

R(a, b; f ) =
(f (b) – f (a))

(b – a) · 
f ′(a)f ′(b)

≤ L

M , ()

where L = supx∈E f ′(x), M = infx∈E f ′(x). Now consider the case (a, b) ⊂ V . We divide this
case into two parts:

• the interval (a, b) contains the point xi∗ ,
• the interval (a, b) does not contain xi∗ .

If (a, b) does not contain xi∗ , then there can be two cases: xi∗ ≺ a ≺ b or a ≺ b ≺ xi∗ . We
prove the first case xi∗ ≺ a ≺ b, the second case can be analogously proved.

R(a, b; f ) =
(f (b) – f (a))

(b – a) · 
f ′(a)f ′(b)

=


α
i∗

· ((b – xi∗ )αi∗ – (a – xi∗ )αi∗ )

((b – xi∗ ) – (a – xi∗ )) · 
(b – xi∗ )αi∗ –(a – xi∗ )αi∗ – . ()
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If we take y := (b–xi∗ )



(a–xi∗ )



, then it is easy to see that y > , and using this notation we can write

() in the form

R(y) := R(a, b; f ) =


α
i∗

· (yαi∗ – y–αi∗ )

(y – y–) , y > .

Hence, the function R(y) = 
α

i∗
· (yαi∗ –y–αi∗ )

(y–y–) is decreasing on (,∞) and

sup
y>

R(y) = . ()

Let xi∗ ∈ (a, b), then

R(a, b; f ) =
(f (b) – f (a))

(b – a) · 
f ′(a)f ′(b)

=


α
i∗

· ((b – xi∗ )αi∗ – (xi∗ – a)αi∗ )

((b – xi∗ ) – (xi∗ – a)) · 
(b – xi∗ )αi∗ –(xi∗ – a)αi∗ – . ()

Again if we take y := (b–xi∗ )



(xi∗ –a)



, then it is easy to see that  < y < ∞, and using this notation

we can write () in the form

R(y) := R(a, b; f ) =


α
i∗

· (yαi∗ + y–αi∗ )

(y + y–) , y > .

Hence, the function R(y) = 
α

i∗
(yα+y–αi∗ )

(y+y–) is increasing on (, ) and decreasing on (,∞), so

sup
<y<∞

R(y) =


α
i∗

. ()

Now we consider case (). It is clear that b – a > εi∗
 , and since f is strictly increasing we

have that f (b)–f (a)
b–a ≤ const. Besides that 

f ′(a)f ′(b) cannot be sufficiently large. Hence, from
this and from (), (), () the proof of the lemma follows. �

Proof of Theorem . Denote by E∗ = S \⋃n
i=(xi – εi, xi + εi), V ∗ =

⋃n
i=(xi – εi

 , xi + εi
 ) and

A = {, , . . . , k}. We separate the set A into three disjoint subsets A, A, A as follows:
(a) A = {i ∈ A : (ai, bi) ⊂ V ∗},
(b) A = {i ∈ A : (ai, bi) ⊂ E∗},
(c) A = A \ (A ∪ A).
Using these subsets we write the left site of () in the following form:

k∏

i=

R(ai, bi; f ) =
∏

i∈A

R(ai, bi; f ) ×
∏

i∈A

R(ai, bi; f ) ×
∏

i∈A

R(ai, bi; f ). ()

Now we estimate every product of () separately.
(a) Let i ∈ A. In this case we consider two subsets of A: A

 = {i ∈ A : xj ∈ (ai, bi), j =
, , . . . , n} and A

 = A \ A
. Let i ∈ A

, then by Lemma . the cross-ratio distortion
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R(ai, bi; f ) is bounded by 
α

i
for fixed i in the neighborhood of each singular point xj,

j = , , . . . , n, and since the number of intervals covering every singular point xj does not
exceed p, we have

∏

i∈A


R(ai, bi; f ) ≤ 
α

p


· 
α

p


· · · 
α

p
n

. ()

Let i ∈ A
 , then by Lemma . we have

∏

i∈A


R(ai, bi; f ) ≤ . ()

(b) Let i ∈ A, then by Lemma . we have

∏

i∈A

R(ai, bi; f ) ≤ C. ()

(c) Let i ∈ A, then similarly to item (a), the number of intervals covering the end points
of V ∗ and E∗ does not exceed p, and by Lemma . we have

∏

i∈A

R(ai, bi; f ) ≤ Cpn
 . ()

Hence, the proof of Theorem . follows from ()-(). �

Before we prove the next lemma, we introduce a concept of wandering interval.

Definition . We say that I is a wandering interval of the circle map f if:
• the intervals I, f (I), . . . , f n(I), . . . are pairwise disjoint;
• the ω-limit set of I is not equal to a single periodic orbit.

Lemma . Suppose that a circle homeomorphism f with irrational rotation number sat-
isfies conditions (i)-(iii) without break points. Then f has no wandering interval.

Proof Assume that I ⊂ S is a wandering interval of f . It is easy to see that by the properties
of dynamical partition of S and by the mean value theorem we have

(
f qn (a)

)′ =
|f qn (f qn– (I))|

|f qn– (I)| and
(
f qn (b)

)′ =
|f qn (I)|

|I| , ()

where a ∈ f qn– (I), b ∈ I and the sign | · | denotes the length of the given interval. If we
choose an interval J = [a, b], then f qn (J) = [f qn (a), f qn (b)]. Using () and () we have

R
(
J ; f qn

)
=

|f qn (J)|
|J| · 

(f qn (a))′(f qn (b))′

=
|f qn (J)|

|J| · |f qn– (I)|
|f qn (I)| · |I|

|f qn (f qn– (I))| . ()



Akhatkulov and Md Noorani Journal of Inequalities and Applications  (2015) 2015:106 Page 8 of 8

Since I is a wandering interval, the sequence {|f qn (I)|}∞n= tends to zero when n goes to
infinity, and it follows from this that the second fraction |f qn– (I)|

|f qn (I)| in the second product of
() does not tend to zero. Since I ⊂ f qn (J), the first fraction also does not tend to zero, but
the third fraction tends to infinity when n goes to infinity, i.e., |I|

|f qn (f qn– (I))| → ∞, n → ∞.
So the last product in () tends to infinity. This is a contradiction to () and it proves the
lemma. �

Proof of Theorem . The proof of the theorem easily follows from Lemma . with the
fact (see []) that the homeomorphism f without periodic points is conjugate to the linear
rotation fρ if and only if f does not have a wandering interval. �
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