39 research outputs found

    Homoleptic imidazolate frameworks (3)(infinity)[Sr1-xEux(Im)(2)]-hybrid materials with efficient and tuneable luminescence.

    Get PDF
    Homoleptic frameworks of the formula 3∞[Sr1−xEux(Im)2] (1) x = 0.01–1.0; Im− = imidazolate anion, C3H3N2−) are hybrid materials that exhibit an intensive green luminescence. Tuning of both emission wavelength and quantum yield is achieved by europium/strontium substitution so that a QE of 80% is reached at a Eu content of 5%. Even 100% pure europium imidazolate still shows 60% absolute quantum efficiency. Substitution of Sr/Eu shows that doping with metal cations can also be utilized for coordination compounds to optimize materials properties. The emission is finely tuneable in the region 495–508 nm via variation of the europium content. The series of frameworks 3∞[Sr1−xEux(Im)2] presents dense MOFs with the highest quantum yields reported for MOFs so far

    Effective Space Confinement by Inverse Miniemulsion for the Controlled Synthesis of Undoped and Eu3+^{3+} -Doped Calcium Molybdate Nanophosphors: A Systematic Comparison with Batch Synthesis

    Get PDF
    The possibility to precisely control reaction outcomes for pursuing materials with well-defined features is a main endeavor in the development of inorganic materials. Confining reactions within a confined space, such as nanoreactors, is an extremely promising methodology which allows to ensure control over the final properties of the material. An effective room temperature inverse miniemulsion approach for the controlled synthesis of undoped and Eu3+-doped calcium molybdate crystalline nanophosphors was developed. The advantages and the efficiency of confined space in terms of controlling nanoparticle features like size, shape, and functional properties are highlighted by systematically comparing miniemulsion products with calcium molybdate particles obtained without confinement from a typical batch synthesis. A relevant beneficial impact of space confinement by miniemulsion nanodroplets is observed on the control of size and shape of the final nanoparticles, resulting in 12 nm spherical nanoparticles with a narrow size distribution, as compared to the 58 nm irregularly shaped and aggregated particles from the batch approach (assessed by TEM analysis). Further considerable effects of the confined space for the miniemulsion samples are found on the doping effectiveness, leading to a more homogeneous distribution of the Eu3+^{3+} ions into the molybdate host matrix, without segregation (assessed by PXRD, XAS, and ICP-MS). These findings are finally related to the photoluminescence properties, which are evidenced to be closely dependent on the Eu3+^{3+} content for the miniemulsion samples, as an increase of the relative intensity of the direct f–f excitation and a shortening of the lifetime (from 0.901 ms for 1 at. % to 0.625 ms for 7 at. % samples) with increasing Eu3+^{3+} content are observed, whereas no relationship between these parameters and the Eu3+^{3+} content is evidenced for the batch samples. All these results are ascribed to the uniform and controlled crystallization occurring inside each miniemulsion nanodroplet, as opposed to the less controlled nucleation and growth for a classic nonconfined approach

    Microwave-Assisted Polyol Synthesis of Water Dispersible Red-Emitting Eu³⁺-Modified Carbon Dots

    Get PDF
    Eu³⁺-modified carbon dots (C-dots), 3–5 nm in diameter, were prepared, functionalized, and stabilized via a one-pot polyol synthesis. The role of Eu2+^{2+}/Eu³⁺, the influence of O₂ (oxidation) and H₂O (hydrolysis), as well as the impact of the heating procedure (conventional resistance heating and microwave (MW) heating) were explored. With the reducing conditions of the polyol at the elevated temperature of synthesis (200–230 °C), first of all, Eu2+^{2+} was obtained resulting in the blue emission of the C-dots. Subsequent to O₂-driven oxidation, Eu3+-modified, red-emitting C-dots were realized. However, the Eu³⁺ emission is rapidly quenched by water for C-dots prepared via conventional resistance heating. In contrast to the hydroxyl functionalization of conventionally-heated C-dots, MW-heating results in a carboxylate functionalization of the C-dots. Carboxylate-coordinated Eu³⁺, however, turned out as highly stable even in water. Based on this fundamental understanding of synthesis and material, in sum, a one-pot polyol approach is established that results in H₂O-dispersable C-dots with intense red Eu³⁺-line-type emission

    Metal-Organic Framework MIL-68(In)-NH2_{2} on the Membrane Test Bench for Dye Removal and Carbon Capture

    Get PDF
    The metal-organic framework (MOF) MIL-68(In)-NH2_{2} was tested for dye removal from wastewater and carbon capture gas separation. MIL-68(In)-NH2_{2} was synthesized as a neat, supported MOF thin film membrane and as spherical particles using pyridine as a modulator to shape the morphology. The neat MIL-68(In)-NH2_{2} membranes were employed for dye removal in cross-flow geometry, demonstrating strong molecular sieving. MIL-68(In)-NH2_{2} particles were used for electrospinning of poylethersulfone mixed-matrix membranes, applied in dead-end filtration with unprecedented adsorption values. Additionally, the neat MOF membranes were used for H2_{2}/CO2_{2} and CO2_{2}/CH4_{4} separation

    Air-stable Solid-state Photoluminescence Standards for Quantitative Measurements Based on 4'-phenyl-2,2':6',2''-Terpyridine Complexes with Trivalent Lanthanides

    Get PDF
    Correct photoluminescence quantum yield (PLQY) determination in the solid state is vital for numerous application fields, such as photovoltaics, solid lighting or the development of phosphors. In order to increase the limited number of suitable standards for such determinations, two new Ln 3+ -based complexes with 4′-phenyl-2,2′ : 6′,2"-terpyridine γ-[Ln 4 (OAc) 12 (ptpy) 2 ] ( 1-Eu with europium and 1-Tb with terbium) are presented. The corresponding complexes show solid-state QYs of 58(4) % and 46(3) %, respectively, exhibiting broadband absorption in the UV range from 380-200 nm. As Ln 3+ ions in general exhibit narrow f - f transitions, spectral regions with a broadness of 20-35 nm can be checked. Both complexes have suitable thermal stability, up to 270 °C, and are stable with respect to air and humidity, for 1-Eu up to 75 % and for 1-Tb up to 53 % relative humidity. These complexes are altogether suitable as standards to increase the reliability of PLQY determination and proposed to be used for a relative PLQY determination in the solid stat

    X20CoCrWMo10-9//Co3O4: a Metal-Ceramic Composite with Unique Efficiency Values for Water-Splitting in Neutral Regime

    Full text link
    Water splitting allows the storage of solar energy into chemical bonds (H2+O2) and will help to implement the urgently needed replacement of limited available fossil fuels. Particularly in neutral environment electrochemically initiated water splitting suffers from low efficiency due to high overpotentials caused by the anode. Electro-activation of X20CoCrWMo10-9, a Co-based tool steel resulted in a new composite material (X20CoCrWMo10-9//Co3O4) that catalyzes the anode half-cell reaction of water electrolysis with a so far unequalled effectiveness. The current density achieved with this new anode in pH 7 corrected 0.1 M phosphate buffer is over a wide range of overpotentials around 10 times higher compared to recently developed, up-to-date electrocatalysts and represents the benchmark performance advanced catalysts show in regimes that support water splitting significantly better than pH 7 medium. X20CoCrWMo10-9//Co3O4 exhibited electrocatalytic properties not only at pH 7, but also at pH 13, which is much superior to the ones of IrO2-RuO2, single-phase Co3O4- or Fe/Ni- based catalysts. Both XPS and FT-IR experiments unmasked Co3O4 as the dominating compound on the surface of the X20CoCrWMo10-9//Co3O4 composite. Upon a comprehensive dual beam FIB-SEM (focused ion beam-scanning electron microscopy) study we could show that the new composite does not exhibit a classical substrate-layer structure due to the intrinsic formation of the Co-enriched outer zone. This structural particularity is basically responsible for the outstanding electrocatalytic OER performance
    corecore