3,154 research outputs found

    Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    Get PDF
    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)–(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI

    True zero-training brain-computer interfacing: an online study

    Get PDF
    Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model

    Bipolar spectrum disorders in a clinical sample of patients with Internet addiction: Hidden comorbidity or differential diagnosis?

    Get PDF
    Background and aims Behavioral addictions and bipolar disorders have a certain probability of co-occurrence. While the presence of a manic episode has been defined as an exclusion criterion for gambling disorder, no such exclusion has been formulated for Internet addiction. Methods A clinical sample of 368 treatment seekers presenting with excessive to addictive Internet use was screened for bipolar spectrum disorders using the Mood Disorder Questionnaire. Psychopathology was assessed by the Symptom Checklist 90R and a clinical interview was administered to screen for comorbid disorders. Results Comorbid bipolar disorders were more frequent in patients meeting criteria for Internet addiction (30.9%) than among the excessive users (5.6%). This subgroup showed heightened psychopathological symptoms, including substance use disorders, affective disorders and personality disorders. Further differences were found regarding frequency of Internet use regarding social networking sites and online-pornography. Discussion Patients with Internet addiction have a heightened probability for meeting criteria of bipolar disorders. It is not possible to draw conclusions regarding the direction of this association but it is recommended to implement screening for bipolar disorders in patients presenting with Internet addiction. Conclusion Similar to gambling disorder, it might prove necessary to subsume bipolar disorders as an exclusion criterion for the future criteria of Internet addiction

    Spinon excitations in the XX chain: spectra, transition rates, observability

    Get PDF
    The exact one-to-one mapping between (spinless) Jordan-Wigner lattice fermions and (spin-1/2) spinons is established for all eigenstates of the one-dimensional s = 1=2 XX model on a lattice with an even or odd number N of lattice sites and periodic boundary conditions. Exact product formulas for the transition rates derived via Bethe ansatz are used to calculate asymptotic expressions of the 2-spinon and 4-spinon parts (for large even N) as well as of the 1-spinon and 3-spinon parts (for large odd N) of the dynamic spin structure factors. The observability of these spectral contributions is assessed for finite and infinite N.Comment: 19 pages, 10 figure

    Situation-Aware Environment Perception Using a Multi-Layer Attention Map

    Full text link
    Within the field of automated driving, a clear trend in environment perception tends towards more sensors, higher redundancy, and overall increase in computational power. This is mainly driven by the paradigm to perceive the entire environment as best as possible at all times. However, due to the ongoing rise in functional complexity, compromises have to be considered to ensure real-time capabilities of the perception system. In this work, we introduce a concept for situation-aware environment perception to control the resource allocation towards processing relevant areas within the data as well as towards employing only a subset of functional modules for environment perception, if sufficient for the current driving task. Specifically, we propose to evaluate the context of an automated vehicle to derive a multi-layer attention map (MLAM) that defines relevant areas. Using this MLAM, the optimum of active functional modules is dynamically configured and intra-module processing of only relevant data is enforced. We outline the feasibility of application of our concept using real-world data in a straight-forward implementation for our system at hand. While retaining overall functionality, we achieve a reduction of accumulated processing time of 59%.Comment: Update 1: Removed minor typos, corrected FKZ. Update 2: Extension of Section III-E. Rewording in some sections to improve clarity. Added IEEE Copyright Notic

    Quantum-Chemical Insights from Interpretable Atomistic Neural Networks

    Get PDF
    With the rise of deep neural networks for quantum chemistry applications, there is a pressing need for architectures that, beyond delivering accurate predictions of chemical properties, are readily interpretable by researchers. Here, we describe interpretation techniques for atomistic neural networks on the example of Behler–Parrinello networks as well as the end-to-end model SchNet. Both models obtain predictions of chemical properties by aggregating atom-wise contributions. These latent variables can serve as local explanations of a prediction and are obtained during training without additional cost. Due to their correspondence to well-known chemical concepts such as atomic energies and partial charges, these atom-wise explanations enable insights not only about the model but more importantly about the underlying quantum-chemical regularities. We generalize from atomistic explanations to 3d space, thus obtaining spatially resolved visualizations which further improve interpretability. Finally, we analyze learned embeddings of chemical elements that exhibit a partial ordering that resembles the order of the periodic table. As the examined neural networks show excellent agreement with chemical knowledge, the presented techniques open up new venues for data-driven research in chemistry, physics and materials science.EC/H2020/792572/EU/Machine Learning for Catalytic Carbon Dioxide Activation/MachineCatBMBF, 01IS14013A, Verbundprojekt: BBDC - Berliner Kompetenzzentrum für Big DataBMBF, 01IS18037A, Verbundprojekt BIFOLD-BZML: Berlin Institute for the Foundations of Learning and DataEC/H2020/725291/EU/Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments/BeStM

    Coherent backscattering of Bose-Einstein condensates in two-dimensional disorder potentials

    Get PDF
    We study quantum transport of an interacting Bose-Einstein condensate in a two-dimensional disorder potential. In the limit of vanishing atom-atom interaction, a sharp cone in the angle-resolved density of the scattered matter wave is observed, arising from constructive interference between amplitudes propagating along reversed scattering paths. Weak interaction transforms this coherent backscattering peak into a pronounced dip, indicating destructive instead of constructive interference. We reproduce this result, obtained from the numerical integration of the Gross-Pitaevskii equation, by a diagrammatic theory of weak localization in presence of a nonlinearity.Comment: 4 pages, 4 figure
    corecore