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Abstract

Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-
Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user.
In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording,
in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI’s classifier can
learn to decode the individual’s brain signals. Unfortunately, this calibration recording consumes valuable time.
Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period
must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main
contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP)
paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained
classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding
mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the
previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to
decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc
approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of
our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory
ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs
comparably to a classic supervised model.
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Introduction

In this manuscript, we present our findings from an online

evaluation of an unsupervised and calibration-less approach to

ERP spelling. For our experiments, we used the basic unsupervised

model proposed in [1]. Moreover, in our previous work [1–3], this

basic model and its extensions were evaluated thoroughly in offline

simulations. The promising results in the aforementioned offline

studies gave rise to the need for an intensive online evaluation of

the unsupervised model, which is the main contribution of the

current manuscript. Before detailing the present study, we will take

a step back and put our contribution into the appropriate context.

Machine learning (ML) methods capable of extracting infor-

mation from high-dimensional and noisy data, e.g. the electroen-

cephalogram (EEG), have thoroughly improved the field of

Brain-Computer Interfaces (BCI). Before the advent of machine

learning, the BCI user was required to complete an intensive

training program lasting several sessions [4]. Thanks to the

machine learning algorithms this training procedure is significantly

reduced [5,6]. As a result, most healthy BCI users can take control

of the BCI (e.g. using a communication application) within a single

session.

The contributions of ML methods to the field of BCI are very

diverse. For motor imagery tasks and slow cortical potentials, they

helped in improving the spatial filtering of electrodes [7], the

classification of mental tasks [8], the recognition of error potentials

[9] and in solving the feature-/channel selection problem [10,11].

The recognition of Event Related Potentials (ERP) benefited

from the introduction of (regularized) ML methods [12–14]. The

majority of these methods are so-called supervised methods, and

they rely on labeled data to train the algorithm. Hence, calibration

session, during which the user is instructed to perform specific

tasks (e.g. focusing on a specific stimulus or imagining a movement

of the left hand), is required to obtain these labeled datasets.

Due to the dependence on these time-consuming calibration

recordings, state-of-the-art BCI systems have difficulties coping
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with the limited attention span of some patients in need of a BCI

[15]. This problem is well recognized by the BCI community, as

evidenced by the multitude of mitigation strategies for both self-

driven paradigms e.g. motor imagery tasks, and paradigms relying

on attention-modulated ERPs that are elicited by external stimuli.

Common strategies comprise: sharing classifiers between users

[16–22] or between sessions of the same user [22,23], the

utilization of more salient stimuli [24–28] and improved exper-

imental paradigms [29–31]. Overall these methods aim to avoid or

at least shorten the required calibration time. Additionally,

approaches aiming to increase the speed at which the user

interacts with the BCI have been proposed. Examples include

dynamic stopping procedures for ERP paradigms [32,33] and the

use of shared control of for example a robotic wheelchair [34].

Other improvements involve the incorporation of elaborate

language models for communication applications [35–37].

When combined, the aforementioned approaches alleviate the

problematic situation but they are not always sufficient – for

example, when the labeled calibration data itself is an outlier

measurement or when there is a different type of non-stationarity

in the data (e.g. due to fatigue). In this case, the knowledge

obtained on the calibration data by the ML model does not allow

for reliable decoding of the normal data in the following online

runs. To compensate for this type of non-stationarity, researchers

have proposed online adaptation strategies [22,23,38–41]. Many

types of ML models rely on valid estimates of the covariance

matrices of the data and of a bias term. As labels are not available

during the online use of the BCI, several of these strategies are

limited to the adaptation of the bias and the pooled covariance

estimate instead of the desired class-wise covariance matrices.

Furthermore, these approaches still require a calibration session

since they are based on supervised trained classifiers, e.g. linear

discriminant analysis (LDA) or support vector machines (SVM).

In the current manuscript, we go beyond these basic adaptation

strategies and argue in favor of a completely unsupervised

classification approach recently proposed by Kindermans et al.

[1]. The unsupervised classifier starts out randomly and learns

online from unlabeled data. As a result, it abandons the need for a

time-consuming calibration recording. Furthermore, the adaptive

nature of the classifier allows it to adjust to changes in the recorded

data. In contrast to the common adaptive approaches

[16,17,22,41], the method analyzed here does not depend on

pre-trained classifiers or data sets from previous sessions.

Nevertheless, the classifier can make use of such data if available,

as shown in offline experiments [2,3].

In previous work, the unsupervised model and its extensions

have been evaluated extensively offline on visual ERP data [1–3].

The promising results obtained in these offline studies elicited the

need for a thorough online evaluation of the unsupervised

approach. The importance of an online evaluation is threefold.

First, the true test of the reliability and robustness of a machine

learning based decoder for BCI is an online evaluation. Offline

analysis can only provide an estimate of the performance.

Therefore, before moving on to patient studies, one has to

ascertain whether the proposed model performs reliably in online

experiments. Second, it demonstrates that it is indeed possible to

integrate the unsupervised decoder in a online BCI setup. Finally,

an offline study can only investigate the adaptation of the machine

learning algorithm to the user. Only an online study enables us to

verify whether the two-way man machine interaction and

adaptation during BCI usage is successful.

This manuscript investigates in how far the established

supervised classification dogma (including time-consuming cali-

bration recordings) can be replaced by the unsupervised approach.

On top of that, instead of a visual ERP paradigm, for which

Kindermans et al. have shown good offline results, we make use of

an auditory ERP paradigm AMUSE proposed by Schreuder et al.

[42]. This auditory ERP paradigm increases the difficulty of

unsupervised learning because its auditory evoked potentials (AEP)

have a lower SNR than those of visual paradigms [43]. We

evaluate the unsupervised method on an online copy spelling task,

which is performed by ten healthy BCI users with normal hearing.

To assess the learning behavior of the unsupervised classifier, it is

being re-set to random parameters three times during the course of

the experiment.

Methods

Ethics statement
Despite not being a medical research study, it involved human

subjects. Thus we followed the ethical principles of the WMA

Declaration of Helsinki. Approval was requested for and granted

by the local ethics committee of the Charité Universitätsmedizin,

Berlin, Germany. Participants were compensated with 8 EUR/h

for participation. They received detailed written information

about the experiment days in advance. Before the start of the

recording session, participants declared written informed consent

for participation and the use of their data in anonymized form. All

recorded data was anonymized during the registration.

Experimental setup
Our experimental setup was designed to compare a classic

supervised calibration based approach to a calibration-less model

based on unsupervised learning. Please note that the supervised

method requires labeled data, hence the requirement for a

calibration session. The unsupervised model on the other hand

does not require labeled data, as a result it can be used without

calibration. Obviously, unsupervised learning is not the only

approach to building a calibration-less BCI. Indeed, cross-subject

transfer learning, where classifiers are pre-trained on a set of

different subjects and subsequently applied to a novel subject (e.g.

[16–22]), is also a valid and increasingly more studied option.

Nevertheless, since this manuscript considers the evaluation of a

specific unsupervised calibration-less approach and a supervised

calibration based approach, we will use the specific machine

learning terms unsupervised and supervised throughout the

remainder of the manuscript.

AMUSE
Up to a few small changes, the present study followed the spatial

auditory ERP paradigm AMUSE proposed in [42], that uses six

different tones as stimuli. In this paradigm, the participant is

surrounded by six speakers, one for each tone. These six stimuli/

tones (40 ms duration) can be uniquely identified by making use of

two sources of information: its unique pitch and its unique

presentation direction (for more details on this double-cueing

paradigm, we refer the reader to [42]). Compared to the original

AMUSE publication, two changes to the ring of speakers are

implemented to reduce the probability of front-back confusions

between stimuli (cone of confusion). First, the position of the

loudspeakers was modified, in this study they are not equally

spaced on the ring, but they are slightly shifted towards the front.

Second, the participant is placed about 10 cm behind the center of

the ring and not in the center itself.

The AMUSE publications [42,44,45] have shown that a BCI

with a purely auditory interface is possible. As the focus of the

present study was on the comparison of a supervised calibration-

based method and an unsupervised calibration-less data processing
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approach (see below), the spelling interface had been simplified

and is supported by information displayed on a screen in front of

the participants. But during the stimulus presentation, the

information on the screen was static.

By using the six tones/directions, the BCI allows to make a one-

out-of-six selection at the end of each trial. A two-step selection

procedure allows for spelling one of 36 symbols. These include 26

letters, German umlauts, punctuation marks as well as an

underscore symbol that represent white space. Writing a symbol

was performed by selecting one out of six groups of symbols in the

first step, and one of the six within-group symbols in the second

selection step. The exact grouping of the symbols is shown in

Fig. 1.

Data acquisition. The EEG was recorded and stored at

1 kHz from 31 passive Ag/AgCl electrodes against nose reference

using BrainProducts BrainAmp amplifiers. Following the extended

10–20 naming scheme, these were channels Fp2, F9, F5, F1, F2,

F6, F10, FT7, FC3, FCz, FC4, FT8, C5, C1, Cz, C2, C6, TP7,

CP3, CPz, CP4, TP8, P9, P5, P1, P2, P6, P10, POz, O1 and O2.

The built-in filters performed a band-pass with a 0.1 Hz lower

bound and 250 Hz for the upper. Any further processing of the

data was preceded by additional low-pass filtering at 45 Hz, and

down-sampling to 100 Hz.

Recording one additional EOG electrode below the right eye, it

became possible to calculate the bipolar vertical EOG using the

EEG channel Fp2, and a horizontal bipolar EOG using EEG

channels F9 and F10. For any of the following signal processing

and classification steps, only the 31 EEG channels (including Fp2,

F9 and F10) were used, not the single vertical EOG channel nor

any bipolar EOG channel.

Participants. Ten healthy, external participants (four fe-

males, six males) with an average age of 34.2 years (median: 30.5,

min: 20, max: 58) were recruited by an online advertisement to

avoid a bias towards university students. These subjects are

represented by the codes nbb, nbc, nbd, nbe, nbf, nbg, nbh, nbi,
nbj, jh. They stated to have normal hearing, to be non-smokers, to

have no known neurological disorder or history thereof, and that

they do not take any psychoactive or EEG-altering substances.

However, a systematic test thereof was not performed. The

individual background of musical education (playing an instru-

ment or singing) varied strongly and ranged from 0 to 36 years

(time accumulated over instruments). Eight subjects had no prior

experience with BCI or EEG experiments. Participant nbj had

participated in an earlier EEG experiment at a different research

lab, but this was not BCI-related. Participant jh participated in an

earlier motor-imagery BCI study of our lab (i.e. the Berlin BCI

group). Every participant received information about the course of

a session about one week in advance. This included task

instructions, the request to have a good night’s rest the night

before, and a morning hair wash on the day of the experiment.

Except for one unreported participant in a pilot recording of a

Figure 1. Drawing of the user interface at the end of a unsupervised block of 15 letters (30 trials). The target text in the first line is always
present for the subject. Text spelled with the unsupervised method appears letter-by-letter in the second line, and the text after re-analysis with the
posthoc method is shown in the third line. In the lower part of the screen, circle positions visualize the auditory scene from a top view. Each circle
encodes one out of six tones/tone directions relative to the user, who is positioned in the middle of the ring of speakers (fixation cross). After
selecting a group of letters (duration: one trial), the user virtually moves into the corresponding circle and can select a letter from within this circle by
a second trial.) The result shown in this figure corresponds to the first unsupervised block of subject nbf.
doi:10.1371/journal.pone.0102504.g001
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reduced version of this experiment, no other subjects participated

in the study.

Course of the experiment. Each participant performed a

single session of approximately 4 hours. This included informing

the participant, receiving consent, the setup of the EEG cap,

detailed instructions, the actual recordings, the wrap-up and a hair

wash. The course of the experimental session itself is visualized in

Fig. 2. In the first block, we educated the participant about the

standard auditory oddball recording. In the second block, we

performed two auditory oddball recordings. In the third block, we

familiarized the subjects with the concept of the spatial tones. After

these three introductory blocks, participants were assigned

alternately into one of the groups A and B.

Members of group A performed a calibration session for the

supervised classifier in the fourth block. In the fifth block, they

were instructed on how to use the spelling interface itself. This

allowed them to perform the copy spelling task in the final six

blocks, alternating between evaluation of the supervised model and

evaluation of the unsupervised model.

Members of group B got immediately acquainted with the

spelling interface. The fifth block was the first evaluation run of the

unsupervised model. The sixth block contained the calibration

session for the supervised model and was followed by the first

evaluation of the supervised model in the seventh block. To

complete the session, the members of group B performed four

more evaluation blocks switching between the unsupervised and

supervised methods.

What follows is a more detailed description of the experimental

blocks.

Standard oddball familiarization and recording. After

the cap setup, the users were shown their ongoing EEG signals and

were taught how to avoid typical artifacts, e.g. as eye-blinks,

during the recordings. In the following, all of the users were first

introduced to, and then performed two standard auditory oddball

recording. Each odball recording lasted five minutes. It comprised

a stream of two short tones originating from a single speaker (from

a front-right direction) with 1000 ms stimulus onset asynchrony

(SOA) and a 1 to 4 ratio between the high-pitched target and low-

pitched non-target tones. The participants were asked to count the

number of target tones (40 per block) silently and motionless.

Familiarization with the spatial tones. After the standard

oddball recording, participants were familiarized with the spatial

auditory setup of the AMUSE paradigm. The participants heard

examples of tone sequences presented from the ring of six

loudspeakers around them. The stimulus presentation started with

a slow SOA of 1000 ms. This was subsequently reduced to a SOA

of 175 ms, which equals the SOA used during the real experiment.

Classifier calibration. During the calibration block, partic-

ipants were repeatedly asked to focus their attention on one of the

six tones/directions. The target tone was indicated prior to trial

start by three tone cues and supported by a visualization of the

target direction on the computer screen in front of the participant.

After a short break of 2 s, a rapid stimulus sequence was presented.

It consisted of 15 iterations of six tones, resulting in 90 tones. The

tones had a duration of 40 ms and were presented in pseudo-

randomized order with a SOA of 175 ms. During the stimulation

sequence of 15.75 s, the participant counted (internally and

motionlessly) the number of target tone appearances (15) while

they tried to neglect non-target tones (75).

Familiarization with copy spelling. Before the first copy-

spelling block, participants were familiarized with the copy-

spelling application that had to be controlled using spatial auditory

attention. By using six tones/directions, the BCI allows to make a

one-out-of-six selection at the end of each trial. To spell one of the

36 symbols, they required two trials. In the first trial, they were

able to select a group of symbols. In the second trial they were able

to select a symbol from this group. The set of possible symbols

consisted of 26 letters, German umlauts, punctuation marks and

white space (represented by an underscore).

(Un)supervised copy spelling. After familiarization with

the interface, the real copy-spelling runs began. During the online

spelling phase, one out of two classification methods was applied

online to decode the spatial attention and thus determined the

copy-spelled symbols. The decoding method alternated between

the supervised and unsupervised methods during the six online

writing blocks. This resulted in three pairs of two blocks, where

within each pair each method was used once.

During each of the six online evaluation blocks, the participants

were asked to copy-spell a string of 15 symbols (split into three

sub-blocks of 5 symbols) by performing 30 selection trials. For a

better comparison between the two methods, the same target

text was used during the two blocks of a pair. The text was

pre-defined for the first two pairs (FRANZ_JAGT_IM_T and

AXI_QUER_DURCH_), and was chosen freely by the user for

the last block pair.

The user interface for the copy spelling task is shown in Fig. 1.

The target string is show on the top of the screen (first line). The

participant had to try to re-produce it symbol by symbol. Wrong

selections could not be undone, as the spelling interface did not

allow for undo actions – neither on the group level nor on the

letter level. The copy-spelled symbols appeared one by one in the

Figure 2. Schematic display of the course of an experimental session.
doi:10.1371/journal.pone.0102504.g002
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second line as the trials were completed. This output was fixed, it

did not change after the initial prediction. Depending on the

decoding success of the BCI system, a symbol in the second line

was either displayed in white (providing that both selection steps

were correct) or in gray otherwise. A special character (u) displayed

in gray indicates that both selections had failed. An additional

third line of symbols in gray was displayed during blocks of the

unsupervised method. This line contained posthoc re-estimates of

the string spelled so far. This complete string of this third line was

updated after each trial. Participants were instructed about the first

two lines and told to ignore the changing third line.

Data Preprocessing
Online data preprocessing was nearly identical for both

classification approaches. The 31-channel EEG data was low-pass

filtered causally to below 40 Hz by a Chebyshev type 2 filter of

order five (stop-band attenuation of 20 dB), and an epoch from -

200 ms to 700 ms relative to the stimulus onset was extracted for

each tone stimulus. The baseline activity of each channel and

stimulus epoch was estimated from the pre-stimulus interval of

[2200 ms 0 ms] and subtracted. For the data of the calibration

block only, outlier epochs were removed based on a variance

criterion, while during online use all epochs were kept. The

variance criterion rejects all epochs where the variance within that

epoch is higher than 2.5 times the variance threshold. In our case,

the threshold is equal to the 90th percentile of the variance of the

epochs.

For classification, twelve features were extracted from each

channel, the intervals (in ms) were [100 130], [130 160], [160

190], [190 220], [220 250] for earlier, more transient ERP

components, and [250 300], [300 350], [350 400], [400 450], [450

500], [500 600], [600 700] for later, slower components. After

concatenation, they formed a 372-dimensional feature vector for

each epoch. The features of a channel consisted of the average

potentials of these twelve time intervals post stimulus. The interval

borders were chosen to generally capture the class-discriminative

ERP information.

For the unsupervised classification method two minor additional

steps had to be included for technical reasons. First, normalization

to zero mean and unit variance was applied feature-wise per trial.

Second, the inclusion of a bias term was necessary. This bias term

is a constant feature equal to 1. Including it allows us to control the

offset of the classifier directly.

Offline data processing for supervised training and for the

visualization of the grand average physiology included the removal

of outlier epochs and outlier channels based on a variance

criterion. Per subject, 100–300 epochs and 0–2 channels were

removed. Furthermore, an acausal forward-backward bandpass

filter was applied (0.5–20 Hz) and baseline activity was removed

prior to computing average ERP responses. Class-discriminant

information is displayed using signed and scaled area under the
ROC curve values (ssAUC), such that ssAUC = 0 corresponds to

AUC = 0.5 and most extreme AUC values are mapped linearly to

ssAUC values of 21 and 1: ssAUC~2|(AUC{0:5).

State-of-the-art: supervised classification
To represent the state-of-the art of a calibration-based,

supervised trained classifier, a subject-specific linear discriminant

analysis (LDA) classifier was used in combination with shrinkage-

regularization on the sample covariance matrices [46]. This type

of classifier is known to perform well on a wide range of ERP-BCI

paradigms including those with visual, auditory and tactile stimuli

[37,47–49]. It was trained on the data of 30 labelled trials collected

during one block of calibration. Please note that thirty trials

correspond to 2250 target epochs and 450 non-target epochs, from

which about 10% had been removed on average by the above

mentioned outlier removal preprocessing. The resulting classifier

was used during three spelling blocks. It was not adapted during its

online use and thus could potentially suffer from non-stationarities

over the course of the experimental session.

Unsupervised classification
To allow for unsupervised learning in ERP spellers, we embed

prior knowledge about the ERP paradigm directly into the

probabilistic model [1]. We explicitly model the fact that the user

has to focus on a single stimulus during an entire trial. It can be

assumed that this and only this specific stimulus (and all repetitions

thereof) will result in a target ERP response, and that any other

stimulus presentation evokes a non-target response. This assump-

tion reduces the problem difficulty and enables us to perform

unsupervised learning by performing inference at the level of the

desired stimulus and not in a binary target vs. non-target setting.

This becomes clear when we consider the number of possible

solutions for the labeling problem. Given 6 different stimuli and 15

iterations per trial (90 stimuli in total), there are just 6 ways to

select the desired stimulus. But there are 290 possible labellings of

the stimuli in a binary target vs non-target setting. On top of that,

limiting the solutions to those that are feasible according to the

paradigm, guarantees us to assign the right label to either all or 4

out of 6 stimuli. When we make a mistake, then we have swapped

the label for the target and a non-target stimulus. The label for the

four remaining non-target stimuli is still assigned correctly. In this

model, we assume that each stimulus has equal probability of

being the desired one, but this can be extended easily to include

prior information from language statistics [2,3,35]. Additionally,

the model assumes that the 1-D projection of the ERP features is

Gaussian with a class-dependent mean and shared variance. This

is slightly more general than the assumption made by LDA, where

the data is assumed to be Gaussian in the original high-

dimensional feature space. Furthermore, the 1-D projection of a

multivariate Gaussian is always Gaussian, but the 1-D projection

of non-Gaussian distributed variables can be Gaussian too. The

distribution of the one-dimensional projection of the EEG features

will be used as an approximation of the distribution of the EEG

itself. This approximation reduces the computational complexity

of inference and classifier updates. Finally, we add regularization

by placing a zero mean, isotropic covariance prior on the

classifier’s weight vector. This prior restricts the classifier to simple

solutions by keeping the weights small.

Defining the probabilistic model. Next, we introduce the

notation. The attended stimulus during trial t is at. There are A
different stimuli, where A~6 in the case of the AMUSE

paradigm. During stimulus presentation i for trial t stimulus st,i

is presented to the user. The function yt,i atð Þ~Tz={ encodes that

when the attended stimulus is presented, it has to be a target

stimulus, if a different stimulus is presented then it must be a non-

target stimulus. Let C be the number of channels and N the

number of samples used per channel, then the CN|1 dimen-

sional EEG feature vector for stimulus i during trial t is denoted by

xt,i. This vector xt,i is projected towards Tz~1 when it is

associated with a target stimulus, and towards T{~{1 if it is a

non-target. The distribution of the projected EEG features has

mean Tz={, depending on target or non-target and precision b.

The CNz1|1 dimensional weight vector used to project the

EEG is w. Note that the additional term corresponds to the bias.

The prior distribution on this weight vector has zero mean and

precision a. Furthermore, let Xt be the matrix containing all the

feature vectors for trial t, one feature vector per column. Let X be

True Zero-Training Brain-Computer Interfacing
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the matrix containing all the feature vectors recorded up till this

point. Finally, y að Þ is the vector containing the target vs. non-

target encoding for all the feature vectors in X .

Using the notation from above, the model is defined as follows.

p atð Þ~
1

A

yt,i atð Þ~
Tz at~st,i

T{ at=st,i

�

p xt,i Dw,atð Þ~N xT
t,iwDyt,i atð Þ,b

� �

p wð Þ~N 0,aIð Þ

The term N xT
t,iwDyt,i atð Þ,b

� �
denotes a normal distribution with

mean yt,i atð Þ and precision b.

Inferring the desired symbol. When we have a trained

model, we can infer the probability that a specific stimulus is being

attended by applying Bayes’s rule:

p atDXtð Þ~ p atð Þp XtDatð Þ
p Xtð Þ

~
p atð Þp XtDatð ÞP
âat p âatð Þp XtDâatð Þ

~
p atð ÞPi p xt,i Datð ÞP
âat p âatð ÞPi p xt,i Dâatð Þ ,

where we predict the stimulus with the highest likelihood.

Unsupervised training. We use the Expectation Maximiza-

tion (EM) algorithm [50] to optimise w and b. The attended

stimuli are unknown and have to be inferred during the

expectation step. Optimizing a is easier as it depends only on w,

thus direct maximum likelihood can be used. The resulting

optimization process uses the following update equations.

w ~
X

a

p aDX ,wold ,bold
� �

XX Tz
aold

bold
I

� �{1

Xy að Þ

b{1~
X

at

p atDX ,wold,bold
� �

xT
t,iw

old{yt,i t(a )
� �2

t,i

a ~
D

wold{mð ÞT wold{mð Þ

The update equation for w can be seen as a weighted sum of all

possible ridge regression classifiers, weighted by the probability

that the labels used to train the classifier are correct given the

previous estimate of w. The update for b{1 is the expected mean

squared error between the projected feature vectors and the target

feature vectors. Thus, b{1 equals the expected variance of the

projected feature vectors. Finally, the precision a is set to the

inverse of the average squared classifier weight. Furthermore, we

would like to stress that even though we train the classifier to

detect the attended stimulus directly, a classifier which discrim-

inates between target and non-target responses is embedded into

the model.

Practical usage. There is one big caveat when training a

classifier without label information. It is impossible to control what

the classifier actually learns, as the underlying algorithm tries to

maximize the likelihood of the data under the current model.

Therefore, it is possible that the classifier learns to solve the exact

opposite problem, i.e. it swaps the target and the non target labels

for the individual stimuli. However, it has been shown that there is

a strong correlation between the data-log likelihood and the

selection accuracy or the AUC [1]. To counter this problem, we

adopted the following approach, which had originally been

proposed in [1], during the online experiments: We initialize five

different classifier pairs. For each pair, we draw ~ww*Nð Þ0,I and

we initialize one classifier with ~ww and one with {~ww. Hence one

classifier per pair can be expected to perform above chance level

and one classifier will be below chance level in terms of AUC for

labeling the individual feature vectors. After each trial, we perform

five EM iterations per classifier. Due to the initialization, we

expect that on average at least one classifier will learn to solve the

desired task and one classifier will learn the opposite task.

Subsequently, we select the best classifier with respect to the

data-log likelihood to predict the attended stimulus. After

predicting the attended stimulus, we update the classifier pairs.

Per pair, we select the classifier with the highest data-log

likelihood. Let ŵw be its weight vector. Then we re-initialize the

other classifier of the pair with {ŵw. This ensures that one classifier

per pair will perform above chance level and one will perform

below chance level. Using this strategy, we maximize the chance

that at least one classifier would solve the task correctly. For

correctness and reproducibility, we would like to mention

that there was a minor mistake in the implementation of the

log likelihood. We used log_lik = 20.5*log(sqrt(2*pi*sigma))2

0.5*((X-mu). ^ 2)/sigma; insteadof log_lik = -log(sqrt(2*pi*sigma))2

0.5*((X-mu). ^ 2)/sigma;. We verified trough offline simulations that

it did had not affected the experimental results. Furthermore,

there are different options to select the best classifier, e.g. selecting

the classifier where the expected mean squared error between the

target label and the actual projection is minimal is also possible.

Unsupervised posthoc classification
When the classifier is used during an online experiment, it

accumulates more and more unlabeled data to train on. As a

consequence, the quality of the decoding model improves as more

trials have been processed. Hence, a re-analysis of the stimuli of

the previous trials may lead to different outcomes compared to the

original (online) predictions. This so-called posthoc re-analysis of

preceding trials can be done easily during the online experiment.

Re-evaluating all previous trials (in addition to the current trial)

allows us to measure accurately how successfully the classifier has

adapted to the user.

Furthermore, this posthoc analysis strategy can provide an

additional benefit to the user during the spelling task by accepting

that the unsupervised classifier might initially make mistakes on

some of the letters. These faulty decisions of the initial classifier

might be revised during the subsequent posthoc re-analysis.

The user can expect the posthoc classifier to correct the initial

mistakes in the output during the course of the online experiment.

Consequently, a user would require a ,BACKSPACE. or

,DELETE. functionality of the spelling application only when

he made an error himself or when he changed his mind about the

already written text.

Hyperparameters
The data from the original AMUSE study [42], which

comprises 21 subjects, was used in an offline analysis to determine
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the hyperparameters of the classification methods. The pre-

analysis showed, that the methods performed stable, and with

good results for a large range of values.

For the unsupervised method, we opted for 5 classifier pairs,

and the number of EM updates per trial was fixed to 5 as well.

Additionally, we chose to initialize b to 1 and a to 100. During the

experiments, the value of the regularization parameter a was

limited to at most 200 to prevent the classifier from collapsing on

the degenerate solution of a vector of zeros. This is a practice that

was suggested in the original paper [1].

The number of stimulus iterations per trial was not determined

in a data driven approach. It was set to 15 to match the original

AMUSE study. The number of trials for both the calibration block

and the online blocks was 30. This value was selected based on our

prior experience with the supervised method. More than 30 trials

of calibration data would not lead to a significant further

improvement of the classifier on the grand average of the original

AMUSE data.

Results

Basic Neurophysiology
For both the unsupervised and the supervised recordings, very

similar ERP responses are observed in the grand average analysis

(left and right plots of Fig. 3). This is a first indicator that the

online performance differences between the methods (see below)

are not caused by differences in the recorded data. In both

conditions, typical attention-related and class-discriminative dif-

ferences can be discerned: a fronto-central negativity between 100

and 200 ms post stimulus and a positivity from 250 ms onwards.

Compared to the original AMUSE setup, the target- and non-

target ERP-responses of fast auditory ERP paradigms were

reproduced in the current study — despite the minor changes in

the experimental setup.

Online performance and block-level temporal dynamics
In our experiments, two (flawless) trials are needed to spell a

symbol (correctly). We begin by presenting the trial-wise selection

accuracies from the online experiment in Fig. 4. For each subject

and each condition, the accuracy is given per block.

Supervised. Averaged over all experimental runs, which

comprises 30 experimental blocks (10 users times three blocks)

with 30 trials per block, the pre-calibrated baseline method

supervised obtains a selection accuracy of 92.1% (see the top row

in Fig. 4). The minimum accuracy of a block is 73% and it is at

least 80% in 27 out of 30 blocks, at least 90% in 21 blocks and all

trials are decoded without flaws in five blocks. Due to the fixed

classifier, the performance is relatively stable over the three

supervised blocks. Increased fatigue had been reported by a

number of participants for the last blocks. This may have lead to

the slight performance drop from the second to the third (last)

block. Despite its small average difference, it was found to be

significant with a paired t-test t(9) = 2.91, p = 0.02.

Based on the supervised classifier alone, it can not be explained

how fatigue might have influenced the classification performance.

We present two hypotheses: first, the changed mental state lead to

non-stationarity in the EEG, but the actual attention task is still

performed well by the fatigued users. As a consequence, the fixed

classifier has more difficulty to decode the trials of the last block, as

the non-stationarity in the EEG disturbs the decoding e.g. via

changes in the covariance structure of the data or changes in the

background EEG. Second, the class-discriminative information

contained in the last block might be reduced due to attention

deficits of the users, which would result in a reduced SNR due to a

less informative signal component. We will show later, by

simulating an extended experimental session with the unsupervised

method, that the SNR is not reduced and that the data can be

decoded reliably.

Unsupervised. In the short online blocks, the randomly

initialized unsupervised method did not reach the performance

level of the supervised classifier. However, with 67% accuracy on

average, it is far above chance level (1=6). Furthermore, its

selection accuracy was at least 70% in half of the 30 unsupervised

blocks and 80% or more in 12 of them. The best six unsupervised

blocks were completed with an online selection accuracy of no less

than 90%. But there is a large amount of variability between the

different users. The best result was obtained during the first

unsupervised block of user nbh, where only the second out of 30

trials was faulty. User nbb on the other hand obtained the worst

result during his final unsupervised block where only 20% of the

trials are decoded accurately. Similar to the supervised method,

the third (last) unsupervised block has on average a decreased

selection accuracy compared to the middle block, but contrary to

the supervised case, this is not statistically significant t(9) = 0.90,

p = 0.39. In addition, the average unsupervised performance is

increased from the first to the second block. An effect that was

statistically significant t(9) = 22.54, p = 0.03, but had not been

observed for the supervised method.

On the individual level, a substantial amount of variability

between unsupervised blocks of the same user is observed.

Participant jh for example was not able to gain control in the

first unsupervised block but achieved 80% selection accuracy in

the second unsupervised block.

Online text entry
Under the hard testing conditions (re-initializing the unsuper-

vised classifier to random values before the start of each block), the

unsupervised classifier performs at chance level at the beginning of

each block. The performance improves dramatically towards the

end of a block, resulting in 7.80 out of 15 (52%) correctly spelled

symbols for an average unsupervised block. In the posthoc

condition, the classifier performance increases to an average of

10.37 out of 15 symbols (69%) per block. This improvement is

possible, as the posthoc classifier has had the possibility to learn

from data of the full block (15 letters/30 trials) before estimating

the written symbols. As a comparison, the pre-trained supervised

classifier manages to spell 12.88 out of 15 symbols (86%) without

error.

To give the reader a feeling of the spelling quality of the

unsupervised approach, Fig. 5 presents the texts spelled (in

German) by an average-performing subject nbf during the three

unsupervised blocks. It is clear that even with a selection accuracy

of nearly 80% in the first block, it is difficult for a human observer

to make sense of the spelled text. A selection accuracy of around

90% in the second block results in better readability. In the first

two blocks, the posthoc classifier was able to revise a substantial

number of symbols which had been predicted erroneously during

the course of the experiment. Even though it introduced new

errors, the amount of wrongly decoded symbols is reduced by

40%, from ten to six.

Unsupervised learning is a significantly more difficult problem

than solving the decoding task with a supervised classifier. This

was amplified by re-initializing the unsupervised classifiers

randomly at the beginning of each block. As a result, some blocks

could not be decoded properly by the unsupervised methods, while

the supervised classifier succeeded to do so. As an example, the

performance was rather poor in the third unsupervised block of

subject nbf and even the posthoc re-analysis was not able to
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correct the output to a human-readable level within these 30

blocks. When we applied the supervised classifier to this block (in

an offline analysis), it was able to perform well on this block. If,

however, the information content is rather high, then the data of

15 trials is sufficient to obtain a good solution unsupervised. The

second block of subject nbf can be taken as an example — here the

selection accuracy of the posthoc re-analysis was equal to the best

supervised result for nbf.
To judge the value of the three methods we should not be

restricted to the spelling accuracy on short blocks. The invested

amount of time is an important factor, especially for patient

applications. At the moment of the posthoc re-analysis (e.g. at the

end of an unsupervised block), a user has spend the same amount

of time interacting with the BCI as if he would have performed

one full calibration run. While the calibration recording cannot

result in any usable text output, the unsupervised block can. On

average, it allows a user to communicate straight away with 2/3 of

the symbols decoded correctly. We are aware, that this rate is not

yet enough to communicate in practical situations. On the other

hand, the remedy is simple: as we will show later on in a simulated

time-extended experiment, most of the errors can be sorted out by

posthoc if the spelling duration is prolonged.

Within-block warm-up dynamics
Now we return to the trial-based performance, and analyze the

dynamic behavior within each of the 30 online blocks. The

unsupervised method undergoes a constant learning process

during the online usage of the BCI. It reveals a so-called warm-

up period even on a single-subject basis (Fig. 6). This period

explains the reduced performance compared to supervised:

unsupervised makes more mistakes during the beginning of each

block than at the end.

Hence, it is an important question, how long an average user

takes to obtain control over the BCI with the unsupervised

approach. We define that a user is able to control the BCI as soon

as three consecutive selections/trials are decoded without mistake.

The probability to do so by guessing is only
1

63
~0:0047. The

exact point in time where the user takes control of the BCI for the

first time is defined as the first trial of the first sequence of 3 error-

free trials. By applying this definition, only three runs ended

without a user reaching control. These were the runs of nbe and jh

in the first unsupervised block and the run of nbb during the third

unsupervised block. For the other runs, the average number of

trials necessary to achieve control was 8:9. Two runs resulted in

control in the very first trial. Furthermore, in 50%, 70% and 90%

of all runs, the users were able to control the BCI within 5, 15 and

25 trials respectively.

As we discussed before, the post-hoc re-analysis re-applies the

final classifier to all trials after processing the entire block. In the

actual experiment, post-hoc was also used to compute an updated

estimate after each trial. The final updated prediction achieved an

average selection accuracy of 80%. In 25 out of 30 blocks it

obtained a selection accuracy of at least 70%. An accuracy above

80% was reported in 19 blocks and in 15 blocks post-hoc predicts

the attended stimulus in at least 90% of the trials. Finally, during

seven out of 30 blocks, the post-hoc method was able to present

and error-free decoding of the entire block. The block-wise

selection accuracy for post-hoc is shown in Fig. 4 and the

individual errors are visualized in Fig. 7, where we see that post-

hoc was able to correct most of the mistakes made during the

online experiment. Unfortunately, for the three blocks that did not

result in control in the unsupervised setting, the post-hoc re-

analysis failed too.

Figure 3. Grand average ERP responses (n = 10) for supervised (left) and unsupervised online spelling blocks (right). Top row:
Responses evoked by target (blue) and non-target (green) stimuli for channels Cz (thick) and F5 (thin). Middle row: Scalp plots visualizing the mean
target (t) and non-target (nt) responses within five selected time intervals (see grey markings of the top row from 130 ms to 460 ms post stimulus).
Bottom row: Scalp plots visualizing the spatial distribution of class-discriminant information, expressed as the signed and scaled area under the
receiver-operator characteristic curve (ssAUC).
doi:10.1371/journal.pone.0102504.g003
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For two of these three cases, we received specific comments by

the users. User nbe reported after the first online block that during

this block, which happened to be with the unsupervised classifier,

she had trouble ignoring one very salient tone (front-left). In the

questionnaire at the end of the session she reported, that this

problem did not persist during following blocks as she had found

an internal strategy to concentrate better on target tones. User jh
reported, that during his first online spelling block (which

happened to be with the unsupervised classifier) he had trouble

ignoring one very salient tone (front-right). However, he got used

to it or found a different mental strategy and reported that the

problem was solved in the following blocks. Nothing was reported

Figure 4. Performance comparisons (trial-based selection accuracy). For each user and the grand average (GA), the performances of three
experimental blocks are given. Chance level performance is at 1=6. Top plot: Online performance of the three blocks per user classified by the
supervised LDA approach. Per subject, the classifier had been pre-trained on calibration data (not shown) and kept fix for all three blocks. Middle
plot: Online performance of blocks controlled by the unsupervised classifier. The unsupervised classifier had been initialized randomly before each
individual block (three times per subject). Bottom plot: performance of the posthoc re-analysis method for the unsupervised blocks. The posthoc
classifier, too, had been initialized randomly before each block.
doi:10.1371/journal.pone.0102504.g004

Figure 5. Spelling results for subject nbf during the unsupervised blocks. Per block, the top line represents the desired text, the middle line
displays text produced online by the unsupervised classification. Text predicted by the posthoc re-analysis at the end of the block is shown at the
bottom line. Two trials are needed to determine a symbol. Individual selection errors (wrong trials) of both methods are marked by black squares
directly below each symbol. Please note that the classifier was re-initialized randomly at the beginning of each block.
doi:10.1371/journal.pone.0102504.g005
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by user nbb which could explain the performance break-down in

the third unsupervised block (which happened to be the last block

overall for this user).

In the next section we will demonstrate by means of a simulated

experiment of an extended online spelling session that even these

blocks contain enough information to allow for reliable decoding

of the EEG — with both the unsupervised and the supervised

methods. Hence, the decoding problem for the unsupervised

approach is not caused by non-informative EEG signals, but

rather by the combination of a relatively short block duration and

a rather low signal to noise ratio. This combination prolongs the

warm-up period of the unsupervised classifiers. In general, the less

data available the harder it is to learn without label information,

and this is amplified when the data has a low signal to noise ratio.

Simulated online experiment of extended duration
As mentioned above, it is interesting to evaluate the perfor-

mance during spelling sessions of an extended duration. For this

purpose we emulated a long spelling session by concatenating

EEG data of the three supervised and the three unsupervised

blocks per subject in chronological order. This allows the

unsupervised method to improve the model by using much more

data compared to the true online experiment. Furthermore, in this

setting, the post-hoc classifier has seen the full data of all six blocks

before it re-analyzed all trials. The grand average result for the

supervised, unsupervised and post-hoc methods are compared in

Fig. 8. Here we see that during the first block of 30 trials the

supervised method outperforms the unsupervised and post-hoc

approaches. As expected, this corroborates the true online results

that we reported in the previous sections. Furthermore, when

analyzing the data on a sub-block basis (10 selections each) then a

paired t-test (p = 0.05) indicates that the difference in performance

between supervised and unsupervised is only significant for the first

2 sub-blocks i.e. 20 trials. From that point on, and for all but the

final two experimental blocks, both methods perform comparably

and the difference is not statistically significant. This indicates that

the proposed online experiment was especially challenging for the

unsupervised method.

The post-hoc approach, which is trained (without using label

information) on the entire test-set, performs relatively stable over

all six blocks. The supervised approach displays a more

pronounced performance drop towards the end. As the two other

methods manage to maintain a high level of performance,

supervised ’s drop can not be caused by less informative EEG

signals. On the sub-block level, the observed differences between

the supervised method on the one hand, and unsupervised and

post-hoc on the other hand were significant for the second to last

and third to last sub-blocks (p = 0.05). Of course, this finding

provides support for the use of adaptive methods, of which the

unsupervised approach is a more powerful variant.

We conclude this section by analyzing the errors on a per-

subject level, like we did for the true online experiments. The

individual selection errors made by the different approaches are

shown in Fig. 9. In the simulation, 49% of the mistakes made by

supervised were made by post-hoc, too. Furthermore, 55% of the

post-hoc mistakes were committed by supervised, too. Even

though we cannot make hard claims, this indicates that there

might be ‘‘objectively’’ difficult trials.

The results from the true online experiments have revealed that

unsupervised makes much more mistakes in the first thirty trials,

Figure 6. Evolution of errors performed over time (3|30 trials) by the unsupervised method for the three unsupervised blocks. Time
is on the horizontal axis, while the lines represent users. The order of the users equals that of Fig. 4, with nbb represented by the top line and jh by the
bottom line. For each trial and user, a green square indicates an accurate selection, a black one marks an error. Clearly, the unsupervised classifier
commits most erroneous decisions shortly after its random initialization at the beginning of each novel block. In the majority of cases users were able
to effectively control the BCI by the end of a block.
doi:10.1371/journal.pone.0102504.g006

Figure 7. Selection errors committed by the posthoc evaluation method after having processing the data of one entire block. The
data displayed stems from the same blocks as in Fig. 6, which had been recorded while feedback was given by the unsupervised method. With the
exception of three difficult blocks (first blocks of users nbe and jh, and third block of user nbb) the posthoc re-analysis obviously outperforms the
original online performance gained by the unsupervised method (see Fig.6). It effectively corrected most initial mistakes at the beginning of each
block, thus recovering communication from the very first trial on. Both unsupervised methods (online and posthoc) had trouble selecting a good
performing classifier for the three difficult blocks.
doi:10.1371/journal.pone.0102504.g007
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i.e. one block. In the extended experiment we observe that for

most users all three method perform similarly from the second

block onwards. At this point, it is interesting to focus once more on

those three blocks where unsupervised and post-hoc failed during

the online sessions. This is block 1 for users nbe and jh and block 6

for user jh. Remarkably, in this extended experiment post-hoc

makes only a few mistakes on these blocks, which indicates that the

warm-up effect limited the spelling performance for unsupervised

and post-hoc in the true online experiment. Furthermore, all three

methods perform quite well in the problematic final block of user

nbb. This illustrates one of the key messages of this manuscript: it is

possible to train a reliable classifier without label information, but

data (from 30 trials more or less) is still required to build a good

decoding model.

Discussion

This work presents an online evaluation of true zero training in

a real online auditory BCI experiment with a low signal to noise

ratio. Our results corroborate previous findings from the offline

analysis on visual ERP data. Our online results indicate that true

unsupervised spelling without any form of prior training is actually

possible, but comes at a price. Compared to a typical calibration

session, the unsupervised approach exhibits a warm-up period

during which the user is able to interact with the system but at the

cost that the output is unreliable. The length of this warm-up

period is subject– and session specific. However, compared to the

calibration session, the warm up period is not necessarily lost time

during which no communication is possible. Instead, the classifier

is able to revise and improve its initial (faulty) predictions thanks to

the constant adaptation. We have shown that these revised

predictions are at least as reliable as those obtained by a

supervised, calibrated system. As a result, the user can effectively

communicate already during the warm-up period by ignoring the

mistakes and continuing to spell as if the previous selections were

correct. The user knows, that the unsupervised adaptation will

eventually revise these mistakes.

Nevertheless, to increase the usability of this approach, the

warm-up period has to be reduced. An offline simulation on visual

data, which has a higher signal to noise ratio, indicates that the

warm-up period is less significant in those paradigms [1,3].

Furthermore, it has been shown in offline analysis that the

inclusion of language models is not only able to increase the

reliability of the decoding, as is the case in a supervised setting

[35,51], but can also reduce the warm-up period [3]. However,

the most significant reduction of the warm up period is obtained

by initializing the model trough transfer learning [3]. In transfer

learning, a general model is obtained using prerecorded data from

different users and used as initialization for a novel user. Then

during online usage, this general model is adapted to the new user.

Kindermans et al. [3] have shown in a simulation of an online

experiment on visual ERP data, that this approach can indeed

Figure 8. Comparison of the simulated grand average performance (n = 10) of the three classification approaches over time. The
horizontal axis shows 18 sub-blocks of 5 symbol selections (10 trials) each, ordered chronologically in six experimental blocks. The performance on
the vertical axis displays, how many of the 10 trials have on average been classified without fault (in absolute numbers). As not all the three
classification approaches were applied online in each of the six blocks, this plot was generated by a simulated online use of the fixed supervised
classifier (solid blue) and the constantly adapting unsupervised classifier (solid green) after a single initial random initialization. The unsupervised
classifier was allowed to learn throughout the 18 sub-blocks without being re-set. In addition, the performance of the post-hoc unsupervised
classifier is plotted (red, dotted). It has re-classified all trials in retrospection, after having learned unsupervised on the whole data from all 18 sub-
blocks. Statistical significant differences between the supervised and the unsupervised performance (p = 0.05) are indicated by asterisks.
doi:10.1371/journal.pone.0102504.g008
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compete with a supervised model. Even when the general model is

trained without label information. We would like to stress that our

novel unsupervised techniques can be readily applied also beyond

EEG-based BCI. Also for invasive studies an unsupervised

decoding may be highly useful to adapt for the typical

nonstationarities encountered. Future studies will focus on multi-

modal imaging data, where an unsupervised adaptation scheme

like the one presented may enhance and speed the decoding

process.
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