207 research outputs found

    Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003

    Get PDF
    Strong perturbations of the Arctic stratosphere during the winter 2002/2003 by planetary waves led to enhanced stretching and folding of the vortex. On two occasions the vortex in the lower stratosphere split into two secondary vortices that re-merged after some days. As a result of these strong disturbances the role of transport in and out of the vortex was stronger than usual. An advection and mixing simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS) utilising a suite of inert tracers tagging the original position of the air masses has been carried out. The results show a variety of synoptic and small scale features in the vicinity of the vortex boundary, especially long filaments peeling off the vortex edge and being slowly mixed into the mid latitude environment. The vortex folding events, followed by re-merging of different parts of the vortex led to strong filamentation of the vortex interior. During January, February, and March 2003 flights of the Russian high-altitude aircraft Geophysica were performed in order to probe the vortex, filaments and in one case the merging zone between the secondary vortices. Comparisons between CLaMS results and observations obtained from the Geophysica flights show in general good agreement. Several areas affected by both transport and strong mixing could be identified, allowing explanation of many of the structures observed during the flights. Furthermore, the CLaMS simulations allow for a quantification of the air mass exchange between mid latitudes and the vortex interior. The simulation suggests that after the formation of the vortex was completed, its interior remaind relatively undisturbed. Only during the two re-merging events were substantial amounts of extra-vortex air transported into the polar vortex. When in March the vortex starts weakening additional influence from lower latitudes becomes apparent in the model results. In the lower stratosphere export of vortex air leads only to a fraction of about 5% polar air in mid latitudes by the end of March. An upper limit for the contribution of ozone depleted vortex air on mid-latitude ozone loss is derived, indicating that the maximum final impact of dilution is on the order of 50%

    Systematic Mapping of the Hubbard Model to the Generalized t-J Model

    Full text link
    The generalized t-J model conserving the number of double occupancies is constructed from the Hubbard model at and in the vicinity of half-filling at strong coupling. The construction is realized by a self-similar continuous unitary transformation. The flow equation is closed by a truncation scheme based on the spatial range of processes. We analyze the conditions under which the t-J model can be set up and we find that it can only be defined for sufficiently large interaction. There, the parameters of the effective model are determined.Comment: 16 pages, 13 figures included. v2: Order of sections changed. Calculation and discussion of apparent gap in Section IV.A correcte

    Mott-Hubbard transition in infinite dimensions

    Full text link
    We calculate the zero-temperature gap and quasiparticle weight of the half-filled Hubbard model with a random dispersion relation. After extrapolation to the thermodynamic limit, we obtain reliable bounds on these quantities for the Hubbard model in infinite dimensions. Our data indicate that the Mott-Hubbard transition is continuous, i.e., that the quasiparticle weight becomes zero at the same critical interaction strength at which the gap opens.Comment: 4 pages, RevTeX, 5 figures included with epsfig Final version for PRL, includes L=14 dat

    Simulation of denitrification and ozone loss for the Arctic winter 2002/2003

    Get PDF
    We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen (NOy), with a maximum vortex average permanent NOy removal of over 5 ppb in late December between 500 and 550 K and a corresponding increase of NOy of over 2 ppb below about 450 K. The simulated vertical redistribution of NOy is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 3.4·10&#8722;6 cm&#8722;3 h&#8722;1 in the model, the observed denitrification is well reproduced. In the investigated winter 2002/2003, the denitrification has only moderate impact (<=10%) on the simulated vortex average ozone loss of about 1.1 ppm near the 460 K level. At higher altitudes, above 600 K potential temperature, the simulations show significant ozone depletion through NOx-catalytic cycles due to the unusual early exposure of vortex air to sunlight

    MultiMediate '22: Backchannel Detection and Agreement Estimation in Group Interactions

    Full text link
    Backchannels, i.e. short interjections of the listener, serve important meta-conversational purposes like signifying attention or indicating agreement. Despite their key role, automatic analysis of backchannels in group interactions has been largely neglected so far. The MultiMediate challenge addresses, for the first time, the tasks of backchannel detection and agreement estimation from backchannels in group conversations. This paper describes the MultiMediate challenge and presents a novel set of annotations consisting of 7234 backchannel instances for the MPIIGroupInteraction dataset. Each backchannel was additionally annotated with the extent by which it expresses agreement towards the current speaker. In addition to a an analysis of the collected annotations, we present baseline results for both challenge tasks.Comment: ACM Multimedia 202

    Contribution of mixing to upward transport across the tropical tropopause layer (TTL)

    Get PDF
    During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board the high-altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the entire TTL region roughly extending between 350 and 420 K. Here, analysis of transport across the TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by meteorological analysis winds and heating/cooling rates derived from a radiation calculation. Below the tropopause, the model smoothly transforms from the isentropic to the hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the vertical wind of the meteorological analysis. As in previous CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observations and in the model. The composition of air above &#8776;350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the tropical flanks of the subtropical jets and, to some extent, in the the outflow regions of the large-scale convection, offers an explanation for the upward transport of trace species from the main convective outflow at around 350 K up to the tropical tropopause around 380 K

    Contribution of mixing to the upward transport across the TTL

    Get PDF
    During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly extending between 350 and 420 K. Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets

    Contribution of mixing to the upward transport across the TTL

    Get PDF
    During the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board of the high altitude research aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km (or up to 450 K potential temperature), i.e. spanning the TTL region roughly extending between 350 and 420 K. Analysis of transport across TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by ECMWF winds and heating/cooling rates derived from a radiation calculation. Below the tropopause the model smoothly transforms from the isentropic to hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the ECMWF vertical wind. As with other CLaMS simulations, the irreversible transport, i.e. mixing, is controlled by the local horizontal strain and vertical shear rates. Stratospheric and tropospheric signatures in the TTL can be seen both in the observation and in the model. The composition of air above ≈350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the outflow regions of the large-scale convection and in the vicinity of the subtropical jets, is necessary to understand the upward transport of the tropospheric air from the main convective outflow around 350 K up to the tropical tropopause around 380 K. This mechanism is most effective if the outflow of the mesoscale convective systems interacts with the subtropical jets

    Density of states near the Mott-Hubbard transition in the limit of large dimensions

    Full text link
    The zero temperature Mott-Hubbard transition as a function of the Coulomb repulsion U is investigated in the limit of large dimensions. The behavior of the density of states near the transition at U=U_c is analyzed in all orders of the skeleton expansion. It is shown that only two transition scenarios are consistent with the skeleton expansion for U<U_c: (i) The Mott-Hubbard transition is "discontinuous" in the sense that in the density of states finite spectral weight is redistributed at U_c. (ii) The transition occurs via a point at U=U_c where the system is neither a Fermi liquid nor an insulator.Comment: 4 pages, 1 figure; revised version accepted for publication in Phys. Rev. Let

    Ferromagnetism in the Hubbard model: instability of the Nagaoka state on the triangular, honeycomb and kagome lattices

    Full text link
    In order to analyse the lattice dependence of ferromagnetism in the two-dimensional Hubbard model we investigate the instability of the fully polarized ferromagnetic ground state (Nagaoka state) on the triangular, honeycomb and kagome lattices. We mainly focus on the local instability, applying single spin flip variational wave functions which include majority spin correlation effects. The question of global instability and phase separation is addressed in the framework of Hartree-Fock theory. We find a strong tendency towards Nagaoka ferromagnetism on the non-bipartite lattices (triangular, kagome) for more than half filling. For the triangular lattice we find the Nagaoka state to be unstable above a critical density of n=1.887n=1.887 at U=U=\infty, thereby significantly improving former variational results. For the kagome lattice the region where ferromagnetism prevails in the phase diagram widely exceeds the flat band regime. Our results even allow the stability of the Nagaoka state in a small region below half filling. In the case of the bipartite honeycomb lattice several disconnected regions are left for a possible Nagaoka ground state.Comment: 31 pages + 11 figures, submitted as uuencoded compressed ps-file, to be published in Annalen der Physi
    corecore