38,664 research outputs found

    Casimir energy density in closed hyperbolic universes

    Full text link
    The original Casimir effect results from the difference in the vacuum energies of the electromagnetic field, between that in a region of space with boundary conditions and that in the same region without boundary conditions. In this paper we develop the theory of a similar situation, involving a scalar field in spacetimes with compact spatial sections of negative spatial curvature.Comment: 10 pages. Contribution to the "Fifth Alexander Friedmann International Seminar on Gravitation and Cosmology," Joao Pessoa, Brazil, 2002. Revised version, with altered Abstract and one new referenc

    Symmetries and Triplet Dispersion in a Modified Shastry-Sutherland Model for SrCu_2(BO_3)_2

    Full text link
    We investigate the one-triplet dispersion in a modified Shastry-Sutherland Model for SrCu_2(BO_3)_2 by means of a series expansion about the limit of strong dimerization. Our perturbative method is based on a continuous unitary transformation that maps the original Hamiltonian to an effective, energy quanta conserving block diagonal Hamiltonian H_{eff}. The dispersion splits into two branches which are nearly degenerated. We analyse the symmetries of the model and show that space group operations are necessary to explain the degeneracy of the dispersion at k=0 and at the border of the magnetic Brillouin zone. Moreover, we investigate the behaviour of the dispersion for small |k| and compare our results to INS data.Comment: 9 pages, 8 figures accepted by J. Phys.: Condens. Matte

    Observation of quantum spin noise in a 1D light-atoms quantum interface

    Get PDF
    We observe collective quantum spin states of an ensemble of atoms in a one-dimensional light-atom interface. Strings of hundreds of cesium atoms trapped in the evanescent fiel of a tapered nanofiber are prepared in a coherent spin state, a superposition of the two clock states. A weak quantum nondemolition measurement of one projection of the collective spin is performed using a detuned probe dispersively coupled to the collective atomic observable, followed by a strong destructive measurement of the same spin projection. For the coherent spin state we achieve the value of the quantum projection noise 40 dB above the detection noise, well above the 3 dB required for reconstruction of the negative Wigner function of nonclassical states. We analyze the effects of strong spatial inhomogeneity inherent to atoms trapped and probed by the evanescent waves. We furthermore study temporal dynamics of quantum fluctuations relevant for measurement-induced spin squeezing and assess the impact of thermal atomic motion. This work paves the road towards observation of spin squeezed and entangled states and many-body interactions in 1D spin ensembles

    Anomalous Viscosity of an Expanding Quark-Gluon Plasma

    Get PDF
    We argue that an expanding quark-gluon plasma has an anomalous viscosity, which arises from interactions with dynamically generated color fields. We derive an expression for the anomalous viscosity in the turbulent plasma domain and apply it to the hydrodynamic expansion phase, when the quark-gluon plasma is near equilibrium. The anomalous viscosity dominates over the collisional viscosity for weak coupling and not too late times. This effect may provide an explanation for the apparent ``nearly perfect'' liquidity of the matter produced in nuclear collisions at the Relativistic Heavy Ion Collider without the assumption that it is a strongly coupled state.Comment: Final version accepted for publicatio

    Kilohertz laser ablation for doping helium nanodroplets

    Full text link
    A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and stable enough to be used for spectroscopy, as demonstrated on beam-depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the non-volatile DNA basis Guanine is found to be efficient and a number of oligomers are detected

    Simulations of Electron Capture and Low-Mass Iron Core Supernovae

    Full text link
    The evolutionary pathways of core-collapse supernova progenitors at the low-mass end of the spectrum are beset with major uncertainties. In recent years, a variety of evolutionary channels has been discovered in addition to the classical electron capture supernova channel of super-AGB stars. The few available progenitor models at the low-mass end have been studied with great success in supernova simulations as the peculiar density structure makes for robust neutrino-driven explosions in this mass range. Detailed nucleosynthesis calculations have been conducted both for models of electron capture supernovae and low-mass iron core supernovae and revealed an interesting production of the lighter trans-iron elements (such as Zn, Sr, Y, Zr) as well as rare isotopes like Ca-48 and Fe-60. We stress the need to explore the low-mass end of the supernova spectrum further and link various observables to understand the diversity of explosions in this regime.Comment: 7 page, 3 figures, proceedings of the conference "The AGB-Supernova Mass Transition", to appear in Memorie della Societ\`a Astronomica Italian

    Correlated Emission of Hadrons from Recombination of Correlated Partons

    Full text link
    We discuss different sources of hadron correlations in relativistic heavy ion collisions. We show that correlations among partons in a quasi-thermal medium can lead to the correlated emission of hadrons by quark recombination and argue that this mechanism offers a plausible explanation for the dihadron correlations in the few GeV/c momentum range observed in Au+Au collisions at RHIC.Comment: 4 pages, 2 figures; v2: typo on p.4 correcte

    Properties of quark matter produced in heavy ion collision

    Full text link
    We describe the hadronization of quark matter assuming that quarks creating hadrons coalesce from a continuous mass distribution. The pion and antiproton spectrum as well as the momentum dependence of the antiproton to pion ratio are calculated. This model reproduces fairly well the experimental data at RHIC energies.Comment: 9 pages, 6 Postscript figures, typos are correcte
    corecore