55 research outputs found

    Amino acids whose intracellular levels change most during aging alter chronological lifespan of fission yeast

    Get PDF
    Amino acid deprivation or supplementation can affect cellular and organismal lifespan, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino-acid levels during chronological aging of non-dividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino-acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological lifespan of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the lifespan of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular lifespan

    Effect of water volume and water quality on the efficacy of glyphosate on some important weed species in Turkey

    Get PDF
    The effect of spray water volume and water quality on the performance of three Roundup formulations were investigated in pot experiments to observe whether these factors influence the efficacy of herbicide on three important weed species occurring in Turkey. Sorghum halepense, Cyperus rotundus and Portulaca oleracea were used in the experiments. All Roundup formulations were applied at three different doses with two water volume rates (200 and 600 l/ha) and three different water qualities (clean water, clean water + CaCl2 to simulate hard water and water of Büyük Menderes River). Experiments were carried out at the research station of Adnan Menderes University in the Aydin province of Turkey and replicated twice. Results of the studies showed that the performance of Roundup on weeds was not influenced by herbicide formulation, but significantly affected by water volume as well as water quality. However, the effect of these factors was variable depending on the weed species and the applied herbicide dose. Significant differences were observed mostly at reduced doses more apparently in the case of more sensitive weed species such as P. oleracea and S. halepense. C. rotundus was more tolerant against herbicide so that an influence of investigated factors on the efficacy was observed even with the recommended dose. In general, low volume treatments (200 l/ha) provided significantly higher weed control. Similarly, clean water improved the effectiveness of the herbicide on weeds. These results suggest that using clean spray water and low volume treatments improve the efficacy of glyphosate at the recommended and reduced rates depending on the sensitivities of weed species. Keywords: Cyperus rotundus, formulation, Portulaca oleracea, Sorghum halepenseEinfluss von Wassermenge und -qualität auf die Wirksamkeit von Glyphosat bei wichtigen Unkrautarten in der TürkeiMit Gefäßversuchen wurde der Einfluss von Wassermenge bzw. -qualität auf die Wirksamkeit von drei verschiedenen Roundup-Formulierungen bei wichtigen Unkrautarten in der Türkei untersucht. Sorghum halepense, Cyperus rotundus und Portulaca oleracea wurden bei den Experimenten verwendet. Alle Formulierungen wurden mit drei Aufwandmengen aufgebracht, jede mit 2 verschiedenen Wassermengen (200 und 600 l/ha) und bei drei verschiedenen Wasserqualitäten (reines Wasser, reines Wasser + CaCl2, um die Wasserhärte zu steigern, und Wasser aus dem Büyük Menderes Fluss). Die Versuche wurden am Forschungszentrum der Adnan Menderes Universität in Aydin, Türkei, durchgeführt und zweimal wiederholt. Die Ergebnisse zeigten, dass die Wirksamkeit von Roundup auf die Unkräuter nicht von der Formulierung beeinflusst wurde, aber der Einfluss von Wassermenge bzw. -qualität war signifikant. Jedoch waren die Einflüsse dieser Faktoren von der Unkrautart bzw. von den Aufwandmengen abhängig. Erhebliche Unterschiede wurden bei den reduzierten Aufwandmengen und bei den sensitiveren Arten beobachtet, wie z. B. P. oleracea und S. halepense. C. rotundus war gegenüber dem Herbizid unempfindlicher, so dass die untersuchten Faktoren sogar bei den empfohlenen Aufwandmengen keine Unterschiede der Wirkung verursachten. Im Allgemeinen lieferten Behandlungen mit niedriger Wassermenge signifikant höhere Bekämpfungsgrade. Reines Wasser erhöhte ebenfalls die Wirkung des Herbizids auf die Unkräuter. Aus diesen Ergebnissen geht hervor, dass die Wirksamkeit von Glyphosat bei Anwendung mit reinem Spritzwasser und verringertem Wasseraufwand bei den empfohlenen bzw. reduzierten Aufwandmengen in Abhängigkeit von der Empfindlichkeit der Unkrautarten verbessert wird.Stichwörter: Cyperus rotundus, Formulierung, Portulaca oleracea, Sorghum halepens

    Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism

    Get PDF
    Both single and multicellular organisms depend on anti-stress mechanisms that enable them to deal with sudden changes in the environment, including exposure to heat and oxidants. Central to the stress response are dynamic changes in metabolism, such as the transition from the glycolysis to the pentose phosphate pathway—a conserved first-line response to oxidative insults1,2. Here we report a second metabolic adaptation that protects microbial cells in stress situations. The role of the yeast polyamine transporter Tpo1p3,4,5 in maintaining oxidant resistance is unknown6. However, a proteomic time-course experiment suggests a link to lysine metabolism. We reveal a connection between polyamine and lysine metabolism during stress situations, in the form of a promiscuous enzymatic reaction in which the first enzyme of the polyamine pathway, Spe1p, decarboxylates lysine and forms an alternative polyamine, cadaverine. The reaction proceeds in the presence of extracellular lysine, which is taken up by cells to reach concentrations up to one hundred times higher than those required for growth. Such extensive harvest is not observed for the other amino acids, is dependent on the polyamine pathway and triggers a reprogramming of redox metabolism. As a result, NADPH—which would otherwise be required for lysine biosynthesis—is channelled into glutathione metabolism, leading to a large increase in glutathione concentrations, lower levels of reactive oxygen species and increased oxidant tolerance. Our results show that nutrient uptake occurs not only to enable cell growth, but when the nutrient availability is favourable it also enables cells to reconfigure their metabolism to preventatively mount stress protection

    Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer’s disease mouse model

    Get PDF
    BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    Co-regulation map of the human proteome enables identification of protein functions

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: All mass spectrometry raw files generated in-house have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository36 with the dataset identifier PXD008888. The co-regulation map is hosted on our website at www.proteomeHD.net, and pair-wise co-regulation scores are available through STRING (https://string-db.org). A network of the top 0.5% co-regulated protein pairs can be explored interactively on NDEx (https://doi.org/10.18119/N9N30Q).Code availability: Data analysis was performed in R 3.5.1. R scripts and input files required to reproduce the results of this manuscript are available in the following GitHub repository: https://github.com/Rappsilber-Laboratory/ProteomeHD. R scripts related specifically to the benchmarking of the treeClust algorithm using synthetic data are available in the following GitHub repository: https://github.com/Rappsilber-Laboratory/treeClust-benchmarking. The R package data.table was used for fast data processing. Figures were prepared using ggplot2, gridExtra, cowplot and viridis.Note that the title of the AAM is different from the published versionThe annotation of protein function is a longstanding challenge of cell biology that suffers from the sheer magnitude of the task. Here we present ProteomeHD, which documents the response of 10,323 human proteins to 294 biological perturbations, measured by isotope-labelling mass spectrometry. We reveal functional associations between human proteins using the treeClust machine learning algorithm, which we show to improve protein co-regulation analysis due to robust selectivity for close linear relationships. Our co-regulation map identifies a functional context for many uncharacterized proteins, including microproteins that are difficult to study with traditional methods. Co-regulation also captures relationships between proteins which do not physically interact or co-localize. For example, co-regulation of the peroxisomal membrane protein PEX11β with mitochondrial respiration factors led us to discover a novel organelle interface between peroxisomes and mitochondria in mammalian cells. The co-regulation map can be explored at www.proteomeHD.net .Biotechnology & Biological Sciences Research Council (BBSRC)European Commissio

    A proteomic survival predictor for COVID-19 patients in intensive care

    Get PDF
    Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care

    Fighting post-COVID and ME/CFS - development of curative therapies

    Get PDF
    The sequela of COVID-19 include a broad spectrum of symptoms that fall under the umbrella term post-COVID-19 condition or syndrome (PCS). Immune dysregulation, autoimmunity, endothelial dysfunction, viral persistence, and viral reactivation have been identified as potential mechanisms. However, there is heterogeneity in expression of biomarkers, and it is unknown yet whether these distinguish different clinical subgroups of PCS. There is an overlap of symptoms and pathomechanisms of PCS with postinfectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). No curative therapies are available for ME/CFS or PCS. The mechanisms identified so far provide targets for therapeutic interventions. To accelerate the development of therapies, we propose evaluating drugs targeting different mechanisms in clinical trial networks using harmonized diagnostic and outcome criteria and subgrouping patients based on a thorough clinical profiling including a comprehensive diagnostic and biomarker phenotyping

    Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase (TPI) deficiency

    No full text
    Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency
    corecore