151 research outputs found

    Meta-analysis of nutrient budgets in organic farms across Europe

    Get PDF
    Nutrient supply to organic farms is a highly discussed topic in Europe, due to the restricted availability of external fertilizer resources and the use of contentious inputs. To optimize the flow of nutrients throughout the organic farming system, it is firstly necessary to obtain valid data on the nutrient status of organic farms. Nutrient budgets are a valid tool to investigate the nutrient demand or surplus of a system. However, there is currently no comprehensive overview of nutrient budgets of European organic farms. We therefore carried out a meta-analysis on 56 individual studies that reported either farm-gate or soil-surface budgets. The analysis showed an imbalance between nutrients, a general surplus of nitrogen (45 kg N ha-1 year-1 [95%-confidence interval (CI): 30, 61]), magnesium (16 kg Mg ha-1 year-1 [-9, 40]) and sulphur (45 kg S ha-1 year-1 [-29, 118]), a balanced phosphorus budget (0 kg P ha-1 year-1 [-2,2]), and a deficit for potassium (-12 kg K ha-1 year-1 [-21, -3]). We observed large differences between farms that could be partly explained by farm type and budgeting method. Arable and mixed farms showed lower nitrogen, phosphor, magnesium and sulphur budgets than dairy/beef farms or even vegetable farms, while all farm types besides dairy/ beef farms showed deficits for K budgets. Further, farm-gate budget studies yielded higher budgets than soil surface budgets. Variations between studied countries could also be detected, but the coverage and comparability is low due to differences in studied farm types and budgeting method

    Meta-analysis of nutrient budgets in organic farms across Europe

    Get PDF
    Nutrient supply to organic farms is a highly discussed topic in Europe, due to the restricted availability of external fertilizer resources and the use of contentious inputs. To optimize the flow of nutrients throughout the organic farming system, it is firstly necessary to obtain valid data on the nutrient status of organic farms. Nutrient budgets are a valid tool to investigate the nutrient demand or surplus of a system. However, there is currently no comprehensive overview of nutrient budgets of European organic farms. We therefore carried out a meta-analysis on 56 individual studies that reported either farm-gate or soil-surface budgets. The analysis showed an imbalance between nutrients, a general surplus of nitrogen (45 kg N ha-1 year-1 [95%-confidence interval (CI): 30, 61]), magnesium (16 kg Mg ha-1 year-1 [-9, 40]) and sulphur (45 kg S ha-1 year-1 [-29, 118]), a balanced phosphorus budget (0 kg P ha-1 year-1 [-2,2]), and a deficit for potassium (-12 kg K ha-1 year-1 [-21, -3]). We observed large differences between farms that could be partly explained by farm type and budgeting method. Arable and mixed farms showed lower nitrogen, phosphor, magnesium and sulphur budgets than dairy/beef farms or even vegetable farms, while all farm types besides dairy/ beef farms showed deficits for K budgets. Further, farm-gate budget studies yielded higher budgets than soil surface budgets. Variations between studied countries could also be detected, but the coverage and comparability is low due to differences in studied farm types and budgeting method

    Recycling Nitrogen from urban wastes to organic farming – a scenario analysis

    Get PDF
    The EU aims to expand organic farming to 25%, yet the sector faces constraints in nutrient availability, particularly phosphorus and nitrogen. Societal waste, such as household compost and sewage sludge, contains valuable nutrients for organic farming but requires assessment for nitrogen availability, carbon storage, and contamination risks (e.g., heavy metals). Existing field trials often lack organic management practices, hindering accurate evaluation. To address this gap, a 100-year scenario analysis using the DAISY soil-plant-atmosphere model assessed four crop rotations with varying reliance on legumes, applying different nitrogen rates from various waste sources (household waste compost, sewage sludge, stored human urine) and controls (cattle manure, slurry, deep litter, and mineral fertilization). The model was validated using results from the CRUCIAL trial (Magid et al., 2006). Short term nitrogen recovery rates ranged from 50-60%, increasing to 60-70% in the long term. Deep litter, cattle manure, and compost had the lowest values followed by sewage sludge, human urine, cattle slurry, and mineral fertilization. Nitrogen losses accounted for 34-40% of applied nitrogen, following the same pattern. The opposite trend was seen for the carbon sequestration factor (compost=0.39, manure and deep litter=0.12, sewage sludge=0.09, slurry=0.02). Compost and sewage sludge resulted in surplus Cd and Cu, while Zn levels also increased for the animal manures. Yet, levels remained below EU thresholds after 100 years of continuous application. The study underscores the suitability of societal waste for organic farming, emphasizing the trade-off between nitrogen fertilizer value and carbon storage

    Urban waste fertilizer: effects on yield, nutrient dynamics, and potentially toxic element accumulation

    Get PDF
    Recycling nutrients contained in urban wastes to agriculture is essential in a circular economy. This study simultaneously compares different recycled fertilizers (household waste compost, sewage sludge, human urine) with mineral fertilization and animal manures. Tested were their long-term effects on yield, nutrient budgets, potentially toxic element (PTE) accumulation, and nitrogen (N)/carbon (C) cycle (among others N efficiency, N losses, soil C). Therefore, data from a long-term field trial and predictions from the soil–plant-atmosphere model Daisy were evaluated. Based on trial data, human urine performed similar to the mineral fertilization for yield, N efficiency (mineral fertilizer equivalent (MFE) = 81%), and nutrient budget, while sewage sludge and compost were comparable to animal manures in terms of having lower yields, N efficiencies (MFE 70% and 19% respectively) and higher nutrient imbalances, especially P and S surpluses. Compost and sewage sludge applications resulted in net PTE inputs. Yet, plant uptake and soil accumulation seemed neglectable. Model outputs predicted N losses of 34–55% of supplied N. Losses were highest for compost, followed by deep litter, manure, sewage sludge, human urine, mineral fertilization, and slurry. Nitrate leaching was the main loss pathway (14–41% of N input). Within the compost and straw-rich manure fertilization, about 25% of applied N was stored in the soil which was accompanied by an increase in soil C. The study suggests substitution of established fertilizers with recycled ones is feasible. Thereby each fertilizer has advantages and disadvantages and thus should be utilized according to its strength or in mixtures

    Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Göttingen minipigs

    Get PDF
    Background Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. Methods The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. Results PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. Conclusion These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells

    Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Göttingen minipigs

    Get PDF
    Background: Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. Methods: The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. Results: PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. Conclusion: These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells.Peer Reviewe

    Farm gate nutrient budgets in organic farms – a case study in Germany

    Get PDF
    Low nutrient availability, especially of nitrogen (N) and phosphorus (P), is one of the major constraints on crop yields in organic farming. We investigated the nutrient supply to 20 organic farms in Germany. The investigation showed, that the hgher the reliance on legumes for nitrogen fertilization, the higher is the risk of negative phosphour and potassium budgets

    Reliance on Biological Nitrogen Fixation Depletes Soil Phosphorus and Potassium Reserves

    Get PDF
    Limited nutrient availability is one of the major challenges in organic farming. Little is known about nutrient budgets of organic farms, the underlying factors or effects on soil fertility. We therefore assessed farm gate nutrient budgets for nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg) and sulfur (S) of 20 organic farms in Germany and analyzed their soil nutri-ent status. In average, the budgets showed a surplus of N (19 kg ha−1), K (5 kg ha−1), S (12 kg ha−1), and Mg (7 kg ha−1), and a deficit of P (−3 kg ha−1). There was, however, high variability between farms (e.g. standard deviation up to ± 36 kg N ha−1), which was mainly explained by different degrees of reliance on biological N fixation (BNF) as N source. When farms obtained more than 60% of their N input through BNF, they had deficits of P (mean −8 kg P ha−1) and K (mean −18 kg K ha−1). Nutrient status of most soils was within the ad-vised corridor, but for P, K and Mg, 10–15% of fields were lower and 45–63% were higher than advised. Extractable soil nutrient contents did not correlate with the nutrient budgets, inputs or outputs. Only extractable soil P increased with increasing P inputs and outputs. Fur-thermore, a decrease in extractable soil P was detected with a prolonged history of organic farming, indicating a risk of soil P mining in organic farming systems. In conclusion, the study revealed nutrient imbalances in organic farming and pointed to P and K scarcity as a major challenge for organic farms with high reliance on BNF in the long term

    Do contaminants compromise the use of recycled nutrients in organic agriculture? A review and synthesis of current knowledge on contaminant concentrations, fate in the environment and risk assessment

    Get PDF
    Use of nutrients recycled from societal waste streams in agriculture is part of the circular economy, and in line with organic farming principles. Nevertheless, diverse contaminants in waste streams create doubts among organic farmers about potential risks for soil health. Here, we gather the current knowledge on contaminant levels in waste streams and recycled nutrient sources, and discuss associated risks. For potentially toxic elements (PTEs), the input of zinc (Zn) and copper (Cu) from mineral feed supplements remains of concern, while concentrations of PTEs in many waste streams have decreased substantially in Europe. The same applies to organic contaminants, although new chemical groups such as flame retardants are of emerging concern and globally contamination levels differ strongly. Compared to inorganic fertilizers, application of organic fertilizers derived from human or animal feces is associated with an increased risk for environmental dissemination of antibiotic resistance. The risk depends on the quality of the organic fertilizers, which varies between geographical regions, but farmland application of sewage sludge appears to be a safe practice as shown by some studies (e.g. from Sweden). Microplastic concentrations in agricultural soils show a wide spread and our understanding of its toxicity is limited, hampering a sound risk assessment. Methods for assessing public health risks for organic contaminants must include emerging contaminants and potential interactions of multiple compounds. Evidence from long-term field experiments suggests that soils may be more resilient and capable to degrade or stabilize pollutants than often assumed. In view of the need to source nutrients for expanding areas under organic farming, we discuss inputs originating from conventional farms vs. non-agricultural (i.e. societal) inputs. Closing nutrient cycles between agriculture and society is feasible in many cases, without being compromised by contaminants, and should be enhanced, aided by improved source control, waste treatment and sound risk assessments

    Assessing long term effects of compost fertilization on soil fertility and nitrogen mineralization rate

    Get PDF
    Background: Fertilization with organic waste compost can close the nutrient cycles between urban and rural environments. However, its effect on yield and soil fertility must be investigated. Aim: This study investigated the long-term effect of compost on soil nutrient and potentially toxic elements (PTEs) concentration, nutrient budgets, and nitrogen (N) mineralization and efficiency. Methods: After 21 years of annual compost application (100/400 kg N ha–1 year–1 [100BC/400BC]) alone and combined with mineral fertilization, soil was analyzed for pH, organic carbon (SOC), nutrient (total N and P, Nmin, extractable CAL-P, CAL-K, and Mg), and PTE (Cu, Ni, Zn) concentrations. Yields were recorded and nutrient/PTE budgets and apparent netmineralization (ANM, only 2019) were calculated. Results:Nefficiency was the highest in maize and formineral fertilization. Compost application led to lower N efficiencies, but increased ANM, SOC, pH, and soil N, and surpluses of N, P, and all PTEs. Higher PTE concentrations were only found in 400BC for Cu. Nutrient budgets correlatedwith soil nutrient concentration. A surplus of 16.1 kg P ha–1 year–1 and 19.5 kgKha–1 year–1 resulted in 1mg kg–1 increase in CAL-P and CAL-K over 21 years. Conclusion: Compost application supplies nutrients to crops with a minor risk of soilaccumulation of PTEs. However, the nutrient stoichiometry provided by compost does not match crop offtakes causing imbalances. Synchronization of compost N mineralization and plant N demand does not match and limits the yield effect. In winter wheat only 65–70% of Nmineralization occurred during the growth period
    corecore