175 research outputs found

    The prismatic Sigma 3 (10-10) twin bounday in alpha-Al2O3 investigated by density functional theory and transmission electron microscopy

    Full text link
    The microscopic structure of a prismatic Σ3\Sigma 3 (101ˉ0)(10\bar{1}0) twin boundary in \aal2o3 is characterized theoretically by ab-initio local-density-functional theory, and experimentally by spatial-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope (STEM), measuring energy-loss near-edge structures (ELNES) of the oxygen KK-ionization edge. Theoretically, two distinct microscopic variants for this twin interface with low interface energies are derived and analysed. Experimentally, it is demonstrated that the spatial and energetical resolutions of present high-performance STEM instruments are insufficient to discriminate the subtle differences of the two proposed interface variants. It is predicted that for the currently developed next generation of analytical electron microscopes the prismatic twin interface will provide a promising benchmark case to demonstrate the achievement of ELNES with spatial resolution of individual atom columns

    p53 mutant His175 identified in a newly established fallopian tube carcinoma cell line secreting interleukin 6

    Get PDF
    AbstractFallopian tube carcinoma is a lethal gynecologic malignancy. Etiologic factors are unknown. No experimental data on molecular alterations exist so far. For an in vitro model, we established the permanent human tubal carcinoma cell line FT-MZ-1. The median doubling time was 14 days with 24.2% in S phase. A point missense mutation of the p53 tumor suppressor gene resulting in the His175 mutant was identified. Aberrant p53 protein accumulated in nucleus and cytoplasm. FT-MZ-1 substantially secreted interleukin 6 (Il-6) coinciding with the inactivation of p53 as a transrepressor on the Il-6 gene promoter

    The relationship between particle morphology and rheological properties in injectable nano-hydroxyapatite bone graft substitutes

    Get PDF
    Biomaterials composed of hydroxyapatite (HA) are currently used for the treatment of bone defects resulting from trauma or surgery. However, hydroxyapatite supplied in the form of a paste is considered a very convenient medical device compared to the materials where HA powder and liquid need to be mixed immediately prior to the bone treatment during surgery. In this study we have tested a series of hydroxyapatite (HA) pastes with varying microstructure and different rheological behaviour to evaluate their injectability and biocompatibility. The particle morphology and chemical composition were evaluated using HRTEM, XRD and FTIR. Two paste-types were compared, with the HA particles of both types being rod shaped with a range of sizes between 20 and 80 nm while differing in the particle aspect ratio and the degree of roundness or sharpness. The pastes were composed of pure HA phase with low crystallinity. The rheological properties were evaluated and it was determined that the pastes behaved as shear-thinning, non-Newtonian liquids. The difference in viscosity and yield stress between the two pastes was investigated. Surprisingly, mixing of these pastes at different ratios did not alter viscosity in a linear manner, providing an opportunity to produce a specific viscosity by mixing the two materials with different characteristics. Biocompatibility studies suggested that there was no difference in vitro cell response to either paste for primary osteoblasts, bone marrow mesenchymal stromal cells, osteoblast-like cells, and fibroblast-like cells. This class of nanostructured biomaterial has significant potential for use as an injectable bone graft substitute where the properties may be tailored for different clinical indications

    Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Get PDF
    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass

    Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model

    Get PDF
    Nanocrystalline hydroxyapatite (HA) has good biocompatibility and the potential to support bone formation. It represents a promising alternative to autologous bone grafting, which is considered the current gold standard for the treatment of low weight bearing bone defects. The purpose of this study was to compare three bone substitute pastes of different HA content and particle size with autologous bone and empty defects, at two time points (6 and 12 months) in an ovine scapula drillhole model using micro-CT, histology and histomorphometry evaluation. The nHA-LC (38% HA content) paste supported bone formation with a high defect bridging-rate. Compared to nHA-LC, Ostim(®) (35% HA content) showed less and smaller particle agglomerates but also a reduced defect bridging-rate due to its fast degradation The highly concentrated nHA-HC paste (48% HA content) formed oversized particle agglomerates which supported the defect bridging but left little space for bone formation in the defect site. Interestingly, the gold standard treatment of the defect site with autologous bone tissue did not improve bone formation or defect bridging compared to the empty control. We concluded that the material resorption and bone formation was highly impacted by the particle-specific agglomeration behaviour in this study

    Dose-dense adjuvant chemotherapy for primary breast cancer

    Get PDF
    Adjuvant chemotherapy has been proven to reduce significantly the risk for relapse and death in women with operable breast cancer. Nevertheless, the prognosis for patients presenting with extensive axillary lymph node involvement remains suboptimal. In an attempt to improve on the efficacy of existing chemotherapy, a phase III intergroup trial led by the Cancer and Leukemia Group B (CALGB 97-41) was designed, which tested a mathematical model of tumor growth based on the Norton–Simon hypothesis. This hypothesis, developed about 3 decades ago, and the kinetic model derived from it, created the basis of the concepts of dose density and sequential therapy, both of which were tested in CALGB 97-41. This large prospective randomized trial demonstrated that shortening the time interval between each chemotherapy cycle while maintaining the same dose size resulted in significant improvements in disease-free and overall survival in patients with node-positive breast carcinoma. This finding is highly relevant and has immediate implications for clinical practice

    Final results of a phase I/II pilot study of capecitabine with or without vinorelbine after sequential dose-dense epirubicin and paclitaxel in high-risk early breast cancer

    Get PDF
    Background: The integration of the non-cross-resistant chemotherapeutic agents capecitabine and vinorelbine into an intensified dose-dense sequential anthracycline- and taxane-containing regimen in high-risk early breast cancer (EBC) could improve efficacy, but this combination was not examined in this context so far. Methods: Patients with stage II/IIIA EBC (four or more positive lymph nodes) received post-operative intensified dose-dense sequential epirubicin (150mg/m2 every 2 weeks) and paclitaxel (225mg/m2 every 2 weeks) with filgrastim and darbepoetin alfa, followed by capecitabine alone (dose levels 1 and 3) or with vinorelbine (dose levels 2 and 4). Capecitabine was given on days 1-14 every 21 days at 1000 or 1250 mg/m2 twice daily (dose levels 1/2 and 3/4, respectively). Vinorelbine 25 mg/m2 was given on days 1 and 8 of each 21-day course (dose levels 2 and 4). Results: Fifty-one patients were treated. There was one dose-limiting toxicity (DLT) at dose level 1. At dose level 2 (capecitabine and vinorelbine), five of 10 patients experienced DLTs. Therefore evaluation of vinorelbine was abandoned and dose level 3 (capecitabine monotherapy) was expanded. Hand-foot syndrome and diarrhoea were dose limiting with capecitabine 1250 mg/m2 twice daily. At 35.2 months' median follow-up, the estimated 3-year relapse-free and overall survival rates were 82% and 91%, respectively. Administration of capecitabine monotherapy after sequential dose-dense epirubicin and paclitaxel is feasible in node-positive EBC, while the combination of capecitabine and vinorelbine as used here caused more DLTs. Trial registration: Current Controlled Trials ISRCTN38983527
    • …
    corecore