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Abstract 5 

Nanoscale writing of Cu-nanoparticles in glasses is introduced using transmission electron 6 

microscopy (TEM) focused irradiation. Two types of copper borosilicate glasses, one with 7 

high and one with low Cu-loading, have been tested at energies of 200 - 300 keV and 8 

formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation 9 

conditions is achieved. Electron energy loss spectroscopy (EELS) analysis, combined with 10 

high resolution transmission electron microscopy (HRTEM) imaging confirmed the 11 

irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the 12 

glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle 13 

rings and chains under focused electron beam irradiation are also presented. Conclusively, 14 

electron beam patterning of Cu-loaded glasses is a promising alternative route to well 15 

established femtosecond-laser photoreduction of Cu-ions in glass.  16 

Keywords: Borosilicate glass . Cu nanoparticles . Electron irradiation 17 

 18 

Introduction  19 

Studying the effects of electron irradiation in oxide glasses is a research field with long-20 

standing track record but also recent interest (Sun et al. 2005; Bae et al. 2007; Sun et al. 21 

2004; Jiang and Silcox 2002; Meldrum et al. 1997; Sabri et al. 2015; Ollier et al. 2006; 22 

Möbus et al. 2008 ; Möbus et al. 2010). Electron beams induce various modifications in 23 

structure, composition and properties of the glass, such as phase separation and alkali 24 

migration (Sun et al. 2004; Jiang and Silcox 2002), precipitation (Meldrum et al. 1997; Sabri 25 
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et al. 2015), bubble formation (Ollier et al. 2006), fluidity enhancement and shape rounding 1 

(Möbus et al. 2008 ; Möbus et al. 2010). 2 

Of particular interest is the irradiation induced generation of metal nanoparticles in glass. 3 

Nanoscale metal particles are known to exhibit physical and chemical properties, which are 4 

very different from the bulk materials (Wang et al. 2005). Copper nanoparticles together with 5 

other noble metals such as silver and gold are the most studied metallic nanoparticles. This is 6 

due to the fact that the surface plasmon resonances (SPR) feature in the optical spectra in the 7 

visible region (Yeshchenko et al. 2007). However, in comparison with Au and Ag, copper has 8 

the advantage of being low-cost and highly abundant while showing high conductivity.  9 

Due to the high flexibility and high homogeneity of glasses they are considered to be an 10 

excellent host matrix to add different species. Copper nanoparticles embedded in silicate 11 

glasses are extremely promising materials for optical applications (Zhong et al. 2012; Teng et 12 

al. 2011) showing nonlinear optical properties (Almeida et al. 2012). The methods reported 13 

so far to precipitate copper in glass include for example ion implantation (Wang et al. 2010), 14 

femtosecond laser irradiation (Teng et al. 2010) and sol-gel followed by reduction and then 15 

nanoparticles growth via annealing (Zhong et al. 2013).  Other metal nanoparticles have been 16 

generated by electron irradiation in glass as well (Jiang 2010; Singh and Karmakar 2011). 17 

Cu in silica has been studied by Ito et al (Ito et al. 1999) who reported enlargement of pre-18 

existing metallic copper nanoparticles in an amorphous SiO2 film in scanning transmission 19 

electron microscopy. Outside the field of oxide glasses, electron beam irradiation-induced 20 

formation of copper nanoparticles of various diameters in different materials has been 21 

reported (Pham et al. 2011; Yen et al. 2004; Zhou et al. 2008).        22 

Up to date, however, no research is known in electron irradiation-induced precipitation of Cu 23 

nanocrystals in glasses. Therefore, in the present paper we report on the in-situ formation of 24 
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copper nanoparticles in glass using the impact of electron beam irradiation in transmission 1 

electron microscopy with prospects of achieving high-resolution beam control and patterning 2 

capabilities in the future. 3 

Experimental details 4 

Glass composition and melting process  5 

The compositions of the main oxide glasses used in this study and given acronyms of 6 

CuNBS-A and CuNBS-B across the paper are 20CuO-15Na2O-15B2O3-50SiO2 and 1CuO-7 

15Na2O-15B2O3-69SiO2 (in mol.%), respectively. The motivation for the choice of the 8 

compositions is to explore a concentration range of Cu which is either as low as frequently 9 

used in laser-patterning of various Cu-silicate glasses (Almeida et al. 2012; Teng et al. 2010), 10 

or as high as to provide compatibility with some of our earlier and ongoing work on other 11 

alkali-borosilicate glasses (e.g. loaded with Zn, Ag and others, as reported elsewhere (Sabri et 12 

al. 2015; Yang et al. 2006; Yang et al. 2006)). Both Cu concentrations are low enough to fall 13 

inside the glass forming region of the underlying ternary N-B-S phase diagram. The glass 14 

batch has been prepared by mixing powders of copper oxide (CuO, purity ˃ 99%), boric acid 15 

(H3BO3, purity ˃ 99.5%), sodium carbonate (Na2CO3, purity ~ 99.1%) and silica sand (SiO2, 16 

purity ~ 99.5%) to obtain 200 g glass melt. After melting in a mullite crucible and electric 17 

furnace at 1400oC about 80% of the melt is poured into a pre-heated stainless steel mould 18 

while 20% is rapidly cooled by pouring into water to obtain a glass frit. The glass block was 19 

annealed at 550oC with return to room temperature at 1oC/min. 20 

Sample preparation for electron microscopy  21 

The glass frit was exclusively examined by TEM: specimens were prepared by grinding the 22 

quenched glass frit into a very fine powder in acetone using a pestle and mortar. After ultra-23 

sonication for about 15 min the powder was placed on a holey carbon film, here supported by 24 
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a gold grid, instead of the usual copper grid, such as to avoid overlap of copper EDX signals 1 

from the glass and from the grid. The annealed glass was examined by x-ray diffraction 2 

(XRD) and both TEM and SEM. Initially the glass block is cut twice in cross section by a 3 

diamond cutting saw into a thin slice of about 2×2 cm cross section. For SEM this slice is 4 

then ground using various grit wheels and polished by a diamond paste and carbon coated 5 

against charging.  For TEM and XRD, only grinding was used, making sure that the outer 6 

regions of the cross-sectional slice are cut off and excluded, as they might be less typical due 7 

to their faster cooling rate in contact with air or the metal mould. 8 

Electron irradiation and imaging process  9 

In this research, TEMs of type JEOL JEM 2010F field emission gun (FEG) and JEOL JEM 10 

3010 LaB6 thermal filament operating at 200 and 300 keV respectively have been used for 11 

the purpose of both imaging (low intensity) and deliberate electron beam (high intensity) 12 

irradiation. Electron energy loss spectroscopy (EELS) and energy dispersive x-ray (EDX) 13 

spectroscopy are used on the JEOL JEM 2010F. On both TEMs, most of the irradiation is 14 

applied with largest condenser aperture (CA) and spot size 1. Irradiation densities range from 15 

0.01 pA/ nm2 for low-intensity imaging over <1 pA nm2   for our chosen ''standard'' converged 16 

irradiation conditions and >3 pA/ nm2 for special high-current conditions with condenser 17 

aperture removed. On the other hand, SEM images (both secondary electron (SE) and 18 

backscattered electron (BSE)) were taken using FEI Inspect F, selected at 20 kV, also 19 

equipped with EDX.  20 

 21 

 22 

 23 
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Results 1 

TEM irradiation and imaging of quenched glass  2 

Three rod shaped frit CuNBS-A glass fragments were selected for different electron 3 

irradiation conditions (Fig. 1). The top row is meant to study dose variation via changes of 4 

beam current, while the bottom row contains dose variation via exposure at constant current.  5 

 6 

Fig. 1 TEM micrographs of frit CuNBS-A glass fragments; JEM TEM 3010 at 300 keV.     7 

(a-c): Intensity series; (a) imaging radiation only; (b) after about 3 min of standard converged 8 

electron beam irradiation. (c) similar glass fragment after irradiation with open-aperture (high 9 

current) for about 2 min. (d-g) Time series at constant intensity (standard converged beam, 10 

aperture inserted), including intervals of 3 minutes added irradiation between each image. 11 

  12 

At the first stage, see Fig. 1a, using weak wide-beam (full screen) imaging illumination the 13 

initial glass fragment of roughly 60 nm × 250 nm size is rather homogeneous, except for 14 
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some speckle. Upon comparison with the surrounding amorphous carbon-film, some 1 

coherency-speckle existing for all amorphous materials in HRTEM can be observed (focus-2 

dependent),  and in addition we identify a small number of true clusters or precipitates, which 3 

are darker and sharper (<3 nm-sized). We believe these fine Cu clusters and small particles 4 

have formed during the early stages of focusing and preparing the electron beam for 5 

irradiation. Subsequently, the main precipitation experiment was triggered by systematic 6 

electron beam convergence to a diameter slightly larger than 200 nm for about 3 min 7 

irradiating the entire glass fragment. Fresh nanoparticles of isotropic morphologies 8 

precipitated through the entire glass fragment. The distribution of these nanoparticles is rather 9 

homogeneous and diameters range from about 1-12 nm (yellow arrows for largest NPs in Fig. 10 

1b). These particles have grown by extraction of Cu from the glass, with the matrix getting 11 

brighter (more transparent) and include enlargements of any pre-existing clusters from Fig. 12 

1a, but most of them are newly nucleated particles. As a side effect, some smoothing of rough 13 

surfaces of the glass fragment and rounding-off of the glass corners (Möbus et al. 2010) is 14 

observed, also including the merging (fusion/welding) of the main glass with an originally 15 

separate attached glass particle (red arrow on Fig. 1a,b). An overall shrinkage of the volume 16 

of the glass fragment indicating some ablation of the Na-B-Si-oxide network is found. 17 

Remarkably, formation of particle chains in the glass fragment is evident with the first chain 18 

being about 90 nm long and consisting of about 23 nanoparticles (indicated by red dashed 19 

area in Fig. 1b), while the opposite second chain (green dashed area in Fig. 1b) is shorter. 20 

Both are just inside the edge of the glass fragment along its long aspect. A third chain of 21 

nanoparticles can be seen in the centre of the glass fragment, again parallel to the long axis 22 

(blue dashed area in Fig. 1b), and this consists of a mixture of small and few large 23 

nanoparticles. Due to the large particle numbers involved in these very systematic chains, 24 

they are true 3D chains and cannot be a projection artefact (Xu et al. 2008). The 3rd stage of 25 
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the intensity-series involves irradiation of another glass rod-fragment (initially looking 1 

similar to Fig. 1a) via removing the condenser aperture, increasing currents by a factor 11. 2 

After ~ 2 min of electron irradiation, fewer and larger nanoparticles are formed with less 3 

circular shapes distributed very in-homogeneously through the glass rod. This indicates a 4 

growth and ripening stage, merging multiple particles, with no more Cu extracted from the 5 

glass. The residual glass matrix in regions of >200 nm is now very bright and transparent, 6 

virtually Cu-free and speckle-free. Several small nanoparticles are also stacked outside the 7 

glass rod touching its edges and some others of diameter of about 50 nm are found in an 8 

ordered state outside the glass rod, near the edge, denoted by the red dashed area in Fig. 1c. 9 

The glass rod bending (yellow arrow) of the originally straight rod is another irradiation 10 

result. 11 

Complementary, the exposure-time series at constant current (Fig. 1d-g) reveals formation of 12 

clusters and small round particles over multiple applications of 3 min additional irradiation. 13 

This series started with pre-irradiation levels triggering cluster formation already in Fig. 1d, 14 

however, after switching to the higher current for Fig. 1e, the small particles of Fig. 1d are 15 

not traceable to grow, but rather replaced by mostly new and larger particles. This coincides 16 

with a fragment-change morphing the glass into a more roundish shape. However, the 17 

precipitation saturates quickly in Fig. 1f,g and no ripening occurs unlike in Fig 1c, indicating 18 

lack of long-range diffusion, and therefore lack of temperature.  19 

To reveal further aspects about radiation induced precipitation mechanisms, we now switch 20 

from homogeneous illumination of an entire glass fragment to local electron beam irradiation, 21 

with beam diameter much smaller than the fragment. In such situations, beam-induced ring 22 

formation has been previously reported in silicate glasses (Jiang et al. 2003) but not so far 23 

involving copper. Figure 2a,b shows the impact of irradiation in a FEG-TEM, with beam 24 
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focused to 100-150 nm, showing the formation of nanoring-like structures of nanoparticles in 1 

the frit CuNBS-A glass. 2 

 3 

Fig. 2. (a,b) Formation of ring-like Cu nanoparticles in the glass fragment of frit CuNBS-A 4 

using focused electron beam in JEM TEM 2010F at 200 keV. (c) CuNBS-B glass before 5 

(upper) and after (lower) 6 min of electron irradiation in JEM TEM 3010 at 300 keV. 6 

 7 

In Fig. 2a, a medium intense electron beam of diameter of about 140 nm for about 5 min 8 

irradiation generated nanoparticles of 8-15 nm size along the ring and smaller sub-10 nm NPs 9 

inside the ring. Nearby irradiation with more focused electron beam in a thicker glass 10 

fragment area (Fig. 2b) generated a dark ring with one central dark particle separated by 11 

significantly lighter areas due to Cu-depletion and/or glass matrix ablation. To compare the 12 

response of high and low Cu loaded glasses (CuNBS-A versus CuNBS-B), Figure 2c shows a 13 

glass rod of CuNBS-B being irradiated on its edge for about 6 min. No Cu nanoparticles or 14 

clusters are visible at the region under irradiation, while significant glass ablation is obvious.  15 

An EELS spectrum from the region of irradiation of glass CuNBS-A in Fig. 2a is shown in 16 

Fig. 3a. 17 

 18 
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 1 

Fig. 3. EELS spectra of frit CuNBS-A glass fragments after irradiation showing (a) L-edge 2 

for particle in glass, (b) low loss spectrum showing plasmon-range peaks and M2,3 edge for 3 

metal particle, (c) HRTEM image for a typical nanoparticle in glass with FFT as inset.  4 

 5 

The main peak appearing in the EEL spectrum at around 932 eV with an onset around 929 eV 6 

(Fig. 3a) becomes very distinct after few minutes of irradiation, corresponding to the Cu-L 7 

edge (within expected calibration uncertainties), due to the glass matrix thinning while Cu 8 

segregation pushing Cu-concentration locally. Comparing literature data for fine structure 9 

between Cu, CuO and Cu2O (Ito et al. 1999; Long and Petford-Long 1986; Yang et al. 2014), 10 

the shape of the L-edge of Fig. 3a clearly matches metallic copper, as oxides would show two 11 

high-contrast ''white lines''. Complementary, Fig. 3b shows a low loss EEL spectrum acquired 12 

on one particle as of Fig. 4e, and the peak with onset around 73.4 eV matches the M2,3 edge, 13 

although not distinctive between metal and oxides (Ahn et al. 1983). However, two 14 

distinguishing peaks at around 19.8 and 27.2 eV respectively well match metallic copper 15 

(Ahn et al. 1983), as oxide would show a single broad peak around 22 eV. Together with the 16 

small peak at around 11 eV all those three peaks match literature data (computer modelling 17 

and earlier experiments) for metallic copper, while the origin of these ''plasmon-range'' peaks 18 

has been attributed to d-band interband transitions in (Hébert et al. 2011). 19 
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For further confirmation, Fig. 3c shows HRTEM of a typical precipitate NP from the 1 

irradiation region in Fig. 2a with fast Fourier transformation (FFT) as inset, from which a d-2 

spacing can be extracted compatible with metallic copper.  3 

It is worthwhile to expand our observations to cases where segregated and expelled Cu does 4 

not precipitate inside the glass only but deposits on the glass fragment surface or even in its 5 

vicinity of the support film as shown in Fig. 4.  6 

 7 

Fig. 4. Surface decoration with Cu using frit CuNBS-A glass; JEM TEM 3010 at 300 keV. 8 

(a) completely cluster and particle-free pristine glass; (b) after 2 min irradiation; (c-e): 2nd 9 

glass fragment series consists of (c) zero and (d) 2 min standard irradiation, while (e) shows 10 

delocalised formation of Cu nanocrystals on nearby C-film and sudden transformation of a 11 

glass fragment into a perfect glass ball under open-aperture high level of irradiation.  12 

 13 
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The initial views of the two glass fragments (Fig. 4a,c) are important examples where pre-1 

irradiation was successfully minimised, such that no clusters or particles are visible at all. The 2 

speckle in the fragment is of same level than in the neighbouring carbon film, and therefore 3 

confirms coherency-speckle typical for amorphous materials while no sharp and black 4 

particles, indicating Cu, are visible. Irradiation experiments in Fig. 4b (condenser aperture 5 

inserted) and Fig. 4d (no condenser aperture), resulted in the formation of surface-deposited 6 

NPs, clearly outside the original glass perimeter. Particularly well-faceted morphology and 7 

shapes, typical of single crystal of metallic Cu, are seen in Fig. 4d. Contrary, roundish-shape 8 

NPs are still formed inside the original glass with diameter of about 5-35 nm, except for two 9 

large NPs of ~ 77 nm (yellow arrows in Fig. 4d). A large surface crystal is marked by red 10 

arrow. Another irradiation of a nearby glass fragment with condenser aperture removed 11 

resulted in formation of large-distance evaporated well-faceted Cu nanocrystals of which the 12 

largest has dimensions of about 260 nm × 64 nm (red arrow in Fig. 4e), sitting > 1 �m away 13 

from the original glass fragment which itself became transformed into a perfect ball (Möbus 14 

et al. 2010) of diameter of ~ 1 �m (Fig. 4e). We believe that the sequence of these 15 

phenomena is, (i) firstly electron irradiation-induced precipitation of metallic Cu, (ii) 16 

followed by electron beam ablation of both Cu and glass matrix with re-deposition of metallic 17 

copper onto the carbon film away from the original glass fragment, (iii) and finally 18 

transformation of the residual not yet ablated glass fragment into a perfect ball due to surface 19 

tension.  20 

 21 

 22 

 23 

 24 

 25 
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TEM and SEM imaging of annealed CuNBS-A glass  1 

The annealed version of CuNBS-A glass has been investigated in Fig. 5. 2 

 3 

Fig. 5. (a-d) TEM (JEM TEM 3010 at 300 keV) images of annealed CuNBS-A glass 4 

spherical (a), square (the inset in (a)) and dendritic (b-d) shape of Cu2O precipitates. (e) SEM 5 

image of a typical dendrite copper oxide particle. (f) XRD pattern of annealed CuNBS-A 6 

glass.  7 

The precipitated nano/micro-particles, of dendrite-like shapes, are sorted by the degree of 8 

completeness of dendrite development from Figs. 5a towards 5e. The existence of various 9 

shapes, starting from spherical (Fig. 5a) and square (Fig. 5a, inset) particles up to well-10 

developed dendrite branching systems, is due to different thermal history and temperature 11 

gradient. While we avoided inclusion of surface-near material by cutting it off, the remaining 12 

inner glass would still have experienced a cooling speed gradient as a radial function from the 13 

centre distance. The TEM images are believed to be fragments of larger dendrites, seen on 14 
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the microscale via SEM imaging (Fig. 5e). An XRD pattern of CuNBS-A glass is shown in 1 

Fig. 5f. Dominant peaks at 2θ = 36.4o (d=2.466 Å), 2θ = 42.3o (d=2.135 Å), 2θ = 61.34o 2 

(d=1.510 Å) and 2θ = 73.5o (d=1.287 Å) correspond to the planes of (111), (200), (220) and 3 

(311) of the cubic Cu2O phase, respectively, along with a relatively weak peak at 2θ = 77.3o 4 

(d=1.233 Å) corresponding to (222). SEM-EDX analysis (not shown here) reveals copper 5 

oxide signals overlapping the glass matrix, while also a small Al peak shows, which is 6 

believed to be a residue from the crucible used in glass melting. The overall length of the 7 

dendrite is about 20 �m with few �m long sub-branches indicated by red arrows. The 8 

dendrites with central backbone and multi-branch structures (Fig. 5b & 5c) are consistent 9 

with Kumaran et al (Kumaran et al. 2013). The fact that in Fig. 5c,d the dendrite is preserved 10 

in the centre of the fragment with its backbone oriented parallel to the fracture surface during 11 

grinding indicates mechanical toughening of the glass composite material by the Cu-12 

dendrites. 13 

 14 

Discussions  15 

The formation of Cu particles through electron beam irradiation seems to follow an intensity-16 

dose dependent schedule: (i) initially very fine particles are nucleated at widely dispersed 17 

locations, sometimes even at the low intensity imaging irradiation (Fig. 1a, 1d), but this 18 

premature precipitation could be suppressed in the examples of Fig. 4a and 4c.  (ii) 19 

Irradiation under standard converged beam conditions subsequently leads to further 20 

nucleation and growth of particles up to 10 nm-size range, achieved homogeneously filling 21 

the entire glass volume, with the glass matrix getting paler indicating that Cu still segregates 22 

from glass, not from other clusters. This stage is the saturated end-stage for middle intensity 23 

levels and increasing dose via time does not alter the structure, as obviously the diffusion 24 

constants for long-range diffusion necessary for Ostwald ripening are too low. (iii) Only at 25 
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extreme intensities, with open apertures, large Cu-particles grow by ripening on the cost of 1 

smaller ones, leaving Cu-free space in between, with the large diffusion distances covered by 2 

Cu atoms pointing to beam-induced heating in addition to radiation-induced fluidity (RIF). 3 

As for surface decoration, Fig. 4, we propose that the facetted metallic Cu, surface-bound or 4 

found on the C-film, is a secondary synthesis effect upon irradiation of metallic Cu initially 5 

formed at (but still within) the glass surface, as reported for Ag in (Li and Zhang 2010) and 6 

for Co and Ni in halides in (Gnanavel and Möbus 2012). The fact that those particles form on 7 

opposite ends of C-film holes favours a kind of ''thermal evaporation'' deposition, rather than 8 

an atomic diffusion on the C-film itself. For the low-Cu glass (CuNBS-B) irradiation had not 9 

triggered any visible precipitation even at levels of intensity high enough to ablate the entire 10 

glass matrix. Possibly, combination of irradiation and heat treatment (which would require a 11 

TEM heating holder) would have achieved particle formation, similarly to laser induced 12 

nucleation with subsequent heat treatment (Almeida et al. 2012) for particles. Apart from 13 

observing ring formations, also centre positions in impact craters (Fig. 2b) or centre positions 14 

in rods (Fig. 1b) seem to be areas of stationary Cu location as any (e.g. electrostatic) driving 15 

force there to move these cations to the edge of glass fragment or to the edge of the beam 16 

impact area would cancel.  17 

The purpose for including our comparative study of annealed glass fragments is to elucidate 18 

the need for suppression of thermal precipitation, confirming that a cooling-rate at least as 19 

fast as in our frit-quenching is mandatory. Indeed, further beam irradiation of the fragments 20 

in Fig. 5 did not lead to any new particles or changes to existing dendrites. The reasons why 21 

thermal annealing produces Cu2O while ''electron beam annealing'' produces metallic Cu, is 22 

due to the redox environment, as we used air-furnace heating for annealing, while the TEM-23 

exposure is a reducing medium.  24 

 25 
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Conclusions 1 

We have demonstrated that nm-controllable electron beams can be used, complementary to 2 

the well-established laser irradiation researches, to precipitate nm-sized Cu-particles from a 3 

glass-matrix. This will be of interest for application areas ranging from glass-index grading, 4 

reflectivity engineering and wave-guiding, over surface-plasmon coupling of light or other 5 

nanoplasmonics, onto information storage and radiation-recording strategies, or most widely 6 

the modulation and modification of glass-surface appearance for visual or mechanical 7 

property tuning. Our method of open condenser aperture irradiation in TEM allowed in-situ 8 

observation of processes otherwise only known from thermal annealing, or from high-power 9 

electron beam instruments (e.g. welders or EPMA). Forthcoming work will extend our above 10 

results into systematic pattern generation via nm-localised automatic beam positioning and 11 

movement control.  12 
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