50 research outputs found

    Kerámia marás optimalizálása és a megmunkálás aktuális trendjei

    Get PDF

    Detection of antibacterial activity of essential oil components by TLC-bioautography using luminescent bacteria

    Get PDF
    The aim of the present study was the chemical characterization of some medically relevant essential oils (tea tree, clove, cinnamon bark, thyme and eucalyptus) and the investigation of antibacterial effect of the components of these oils by use of a direct bioautographic method. Thin layer chromatography (TLC) was combined with biological detection in this process. The chemical composition of the oils was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Eucalyptol (84.2%) was the main component of the essential oil of eucalyptus, eugenol (83.7%) of clove oil, and trans-cinnamic aldehyde (73.2%), thymol (49.9%) and terpinen-4-ol (45.8%) of cinnamon bark, thyme and tea tree oils, respectively. Antibacterial activity of the separated components of these oils, as well as their pure main components (eucalyptol, eugenol, trans-cinnamic aldehyde and thymol) was observed against the Gram-negative luminescence tagged plant pathogenic bacterium Pseudomonas syringae pv. maculicola (Psmlux) and the Gram-negative, naturally luminescent marine bacterium Vibrio fischeri. On the whole, the antibacterial activity of the essential oils could be related to their main components, but the minor constituents may be involved in this process. Trans-cinnamic aldehyde and eugenol were the most active compounds in TLC-bioautography. The sensitivity of TLC-bioautographic method can be improved with using luminescent test bacteria. This method is more cost-effective and provides more reliable results in comparison with conventional microbiological methods, e.g. disc-diffusion technique

    Bioassay-guided isolation and identification of antimicrobial compounds from thyme essential oil by means of overpressured layer chromatography, bioautography and GC-MS

    Get PDF
    A simple method is described for efficient isolation of compounds having an antibacterial effect. Two thyme (Thymus vulgaris) essential oils, obtained from the market, were chosen as prospective materials likely to feature several bioactive components when examined by thin layer chromatography coupled with direct bioautography as a screening method. The newly developed infusion overpressured layer chromatographic separation method coupled with direct bioautography assured that only the active components were isolated by means of overrun overpressured layer chromatography with online detection and fractionation. Each of the 5 collected fractions represented one of the five antimicrobial essential oil components designated at the screening. The purity and the activity of the fractions were confirmed with chromatography coupled various detection methods (UV, vanillin-sulphuric acid reagent, direct bioautography). The antibacterial components were identified with GC-MS as thymol, carvacrol, linalool, diethylphthalate, and alpha-terpineol. The oil component diethyl-phthalate is an artificial compound, used as plasticizer or detergent bases in the industry. Our results support that exploiting its flexibility and the possible hyphenations, overpressured layer chromatography is especially attractive for isolation of antimicrobial components from various matrixes

    Application of direct bioautography and SPME-GC-MS for the study of antibacterial chamomile ingredients

    Get PDF
    The isolation and characterization of antibacterial chamomile components were performed by the use of direct bioautography and solid phase microextraction (SPME)-GC-MS. Four ingredients, active against Vibrio fischeri, were identified as the polyacetylene geometric isomers cis- and trans-spiroethers, the coumarin related herniarin, and the sesquiterpene alcohol (-)-alpha-bisabolol

    Product quality and cutting tool analysis for micro-milling of ceramics

    Get PDF

    On the order of summability of the Fourier inversion formula

    Get PDF
    In this article we show that the order of the point value, in the sense of Łojasiewicz, of a tempered distribution and the order of summability of the pointwise Fourier inversion formula are closely related. Assuming that the order of the point values and certain order of growth at infinity are given for a tempered distribution, we estimate the order of summability of the Fourier inversion formula. For Fourier series, and in other cases, it is shown that if the distribution has a distributional point value of order k, then its Fourier series is e.v. Cesàro summable to the distributional point value of order k+1. Conversely, we also show that if the pointwise Fourier inversion formula is e.v. Cesàro summable of order k, then the distribution is the (k+1)-th derivative of a locally integrable function, and the distribution has a distributional point value of order k+2. We also establish connections between orders of summability and local behavior for other Fourier inversion problems

    Boundary non-crossings of Brownian pillow

    Get PDF
    Let B_0(s,t) be a Brownian pillow with continuous sample paths, and let h,u:[0,1]^2\to R be two measurable functions. In this paper we derive upper and lower bounds for the boundary non-crossing probability \psi(u;h):=P{B_0(s,t)+h(s,t) \le u(s,t), \forall s,t\in [0,1]}. Further we investigate the asymptotic behaviour of ψ(u;γh)\psi(u;\gamma h) with γ\gamma tending to infinity, and solve a related minimisation problem.Comment: 14 page
    corecore