30 research outputs found

    Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in southern Portugal

    Get PDF
    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on longterm droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the regioninfo:eu-repo/semantics/publishedVersio

    The impact of vent geometry on the growth of lava domes

    No full text
    International audienceThick lava flows that are a feature of many volcanic fields on the Earth and Venus vary from sheet-like to nearly perfect axisymmetric domes. Here, we investigate how these geometrical characteristics depend on the shape of the feeder vent. We study the gravitational spreading of viscous lava erupting from elliptical vents onto a flat surface using 3-D numerical models. The aspect ratio of the vent, defined to be the major to minor axes ratio, varies between 1 and 25. In the limit of an aspect ratio of one, the vent is circular and spreading is axisymmetric. In the limit where the ratio is large, the vent behaves as a fissure. The numerical models rely on an isoviscous lava rheology and a constant volumetric eruption rate. In all cases, the initial phase of the dome's evolution is in a lava-discharge dominated regime such that spreading is insignificant and the height of the dome increases at a constant rate over the vent area. For vent aspect ratios greater than five, three successive regimes of spreading are identified: 2-D spreading in the direction perpendicular to the major axis of the vent, a transient phase such that the dome shape evolves towards that of a circular dome and a late axisymmetric spreading phase that does not depend on the vent shape. These regimes are delimited by the times required for the flow thickness above the vent to reach a given height and for the flow to spread axisymmetrically up to a length equal to the semi-major axis of the vent. Numerical results for the flow height and runout length tend towards the similarity solutions in the 2-D and axisymmetric regimes. Two main implications for highly viscous (rhyolitic) fissure eruptions can be drawn. First, the fissure length determines the flow regimes. The longer the vent fissure length, the longer the early lava discharge regime and 2-D spreading perpendicular to the length of the fissure. Second, the aspect ratio of fissure-fed lava flows can be used as an indicator of the fissure length and the duration of lava discharge. The ellipticity of some terrestrial fissure-fed flows provides evidence for viscous gravity-driven spreading terminated before the onset of the axisymmetric regime. On the other hand, the circular domes on Venus appear to be the result of fissure-fed eruptions sustained enough for the spreading to reach the axisymmetric regime. We propose relationships providing estimates of the fissure length and the duration of lava discharge based on fossil dome dimensions

    All scales must be considered to understand rifts

    No full text
    SCOPUS: no.jinfo:eu-repo/semantics/publishe

    Lessons from the autumn 2014 flash floods in the city of Nîmes and its neighborhood (France): behavior of several mitigation dams and hydrological analysis

    No full text
    The Languedoc area, in Southern France, is prone to autumnal flash floods which are characteristic of the Mediterranean climate. To cope with this threat, the local authorities have chosen to build several dams on the main dangerous rivers of the area. We have focused on the flood mitigation facilities of two operators: the City of Nîmes and the Gardons Rivers Managing authority. After the catastrophic flash flood of October 1988, the city of Nîmes built flood mitigation dams on many of its high-risk streams. These flood barriers worked several times during the intense rainfalls of autumn 2014. The on-site conclusions drawn from these floods and the computation carried out with hydrological models confirmed how well the dams functioned. In 2010, the Gardons Rivers Managing authority built a flood mitigation dam on the Esquielle River to protect the village of Saint-Geniès-de-Malgoirès. The spillway of this dam worked for the first time in the autumn of 2014. We analyzed one of the major floods monitored on that occasion at its outlet. The goals of this study are: (i) to evaluate dams efficiency and (ii) to test, on a catchment which was not used for its calibration, the AIGA flash flood warning method, which was developed by IRSTEA
    corecore