68 research outputs found

    On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA

    No full text
    International audienceVisual saliency is an attention mechanism which helps to focus on regions of interest instead of processing the whole image or video data. Detecting salient objects in still images has been widely addressed in literature with several formulations and methods. However, visual saliency detection in videos has attracted little attention, although motion information is an important aspect of visual perception. A common approach for obtaining a spatio-temporal saliency map is to combine a static saliency map and a dynamic saliency map. In this paper, we extend a recent saliency detection approach based on principal component analysis (PCA) which have shwon good results when applied to static images. In particular, we explore different strategies to include temporal information into the PCA-based approach. The proposed models have been evaluated on a publicly available dataset which contain several videos of dynamic scenes with complex background, and the results show that processing the spatio-tempral data with multilinear PCA achieves competitive results against state-of-the-art methods

    Breast Ultra-Sound image segmentation: an optimization approach based on super-pixels and high-level descriptors

    No full text
    International audienceBreast cancer is the second most common cancer and the leading cause of cancer death among women. Medical imaging has become an indispensable tool for its diagnosis and follow up. During the last decade, the medical community has promoted to incorporate Ultra-Sound (US) screening as part of the standard routine. The main reason for using US imaging is its capability to differentiate benign from malignant masses, when compared to other imaging techniques. The increasing usage of US imaging encourages the development of Computer Aided Diagnosis (CAD) systems applied to Breast Ultra-Sound (BUS) images. However accurate delineations of the lesions and structures of the breast are essential for CAD systems in order to extract information needed to perform diagnosis. This article proposes a highly modular and flexible framework for segmenting lesions and tissues present in BUS images. The proposal takes advantage of optimization strategies using super-pixels and high-level de-scriptors, which are analogous to the visual cues used by radiologists. Qualitative and quantitative results are provided stating a performance within the range of the state-of-the-art

    Restoration of Videos Degraded by Local Isoplanatism Effects in the Near-Infrared Domain

    Get PDF
    When observing a scene horizontally at a long distance in the near-infrared domain, degradations due to atmospheric turbulence often occur. In our previous work, we presented two hybrid methods to restore videos degraded by such local perturbations. These restoration algorithms take advantages of a space-time Wiener filter and a space-time regularization by the Laplacian operator. Wiener and Laplacian regularization results are mixed differently depending on the distance between the current pixel and the nearest edge point. It was shown that a gradation between Wiener and Laplacian areas improves results quality, so that only the algorithm using a gradation will be used in this article. In spite of a significant improvement in the obtained images quality, our restoration results greatly depend on the segmentation image used in the video processing. We then propose a method to select automatically the best segmentation image

    Classification of SD-OCT Volumes with LBP: Application to DME Detection

    Full text link
    This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Our method is based on Local Binary Patterns (LBP) features to describe the texture of Optical Coherence Tomography (OCT) images and we compare different LBP features extraction approaches to compute a single signature for the whole OCT volume. Experimental results with two datasets of respectively 32 and 30 OCT volumes show that regardless of using low or high level representations, features derived from LBP texture have highly discriminative power. Moreover, the experiments show that the proposed method achieves better classification performances than other recent published works

    An optimization approach to segment breast lesions in ultra-sound images using clinically validated visual cues

    No full text
    International audienceAs long as breast cancer remains the leading cause of cancer deaths among female population world wide, developing tools to assist radiologists during the diagnosis process is necessary. However, most of the technologies developed in the imaging laboratories are rarely integrated in this assessing process, as they are based on information cues differing from those used by clinicians. In order to grant Computer Aided Diagnosis (CAD) systems with these information cues when performing non-aided diagnosis, better segmentation strategies are needed to automatically produce accurate delineations of the breast structures. This paper proposes a highly modular and flexible framework for segmenting breast tissues and lesions present in Breast Ultra-Sound (BUS) images. This framework relies on an optimization strategy and high-level de-scriptors designed analogously to the visual cues used by radiologists. The methodology is comprehensively compared to other sixteen published methodologies developed for segmenting lesions in BUS images. The proposed methodology achieves similar results than reported in the state-of-the-art

    Classification of SD-OCT Volumes for DME Detection: An Anomaly Detection Approach

    No full text
    International audienceDiabetic Macular Edema (DME) is the leading cause of blindness amongst diabetic patients worldwide. It is characterized by accumulation of water molecules in the macula leading to swelling. Early detection of the disease helps prevent further loss of vision. Naturally, automated detection of DME from Optical Coherence Tomography (OCT) volumes plays a key role. To this end, a pipeline for detecting DME diseases in OCT volumes is proposed in this paper. The method is based on anomaly detection using Gaussian Mixture Model (GMM). It starts with pre-processing the B-scans by resizing, flattening, filtering and extracting features from them. Both intensity and Local Binary Pattern (LBP) features are considered. The dimensionality of the extracted features is reduced using PCA. As the last stage, a GMM is fitted with features from normal volumes. During testing, features extracted from the test volume are evaluated with the fitted model for anomaly and classification is made based on the number of B-scans detected as outliers. The proposed method is tested on two OCT datasets and achieved a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, the experiments show that the proposed method achieves better classification performances than other recently published works

    Classifying DME vs Normal SD-OCT volumes: A review

    No full text
    International audienceThis article reviews the current state of automatic classification methodologies to identify Diabetic Macular Edema (DME) versus normal subjects based on Spectral Domain OCT (SD-OCT) data. Addressing this classification problem has valuable interest since early detection and treatment of DME play a major role to prevent eye adverse effects such as blindness. The main contribution of this article is to cover the lack of a public dataset and benchmark suited for classifying DME and normal SD-OCT volumes, providing our own implementation of the most relevant methodologies in the literature. Subsequently, 6 different methods were implemented and evaluated using this common benchmark and dataset to produce reliable comparison

    Classification of Melanoma Lesions Using Sparse Coded Features and Random Forests

    No full text
    International audienceMalignant melanoma is the most dangerous type of skin cancer, yet it is the most treatable kind of cancer, conditioned by its early diagnosis which is a challenging task for clinicians and dermatologists. In this regard, CAD systems based on machine learning and image processing techniques are developed to differentiate melanoma lesions from benign and dysplastic nevi using dermoscopic images. Generally, these frameworks are composed of sequential processes: pre-processing, segmentation, and classification. This architecture faces mainly two challenges: (i) each process is complex with the need to tune a set of parameters, and is specific to a given dataset; (ii) the performance of each process depends on the previous one, and the errors are accumulated throughout the framework. In this paper, we propose a framework for melanoma classification based on sparse coding which does not rely on any pre-processing or lesion segmentation. Our framework uses Random Forests classifier and sparse representation of three features: SIFT, Hue and Opponent angle histograms, and RGB intensities. The experiments are carried out on the public PH 2 dataset using a 10-fold cross-validation. The results show that SIFT sparse-coded feature achieves the highest performance with sensitivity and specificity of 100% and 90.3% respectively, with a dictionary size of 800 atoms and a sparsity level of 2. Furthermore, the descriptor based on RGB intensities achieves similar results with sensitivity and specificity of 100% and 71.3%, respectively for a smaller dictionary size of 100 atoms. In conclusion, dictionary learning techniques encode strong structures of dermoscopic images and provide discriminant descriptors

    Normalization of T2W-MRI Prostate Images using Rician a priori

    No full text
    International audienceProstate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to the normalization of T2W-Magnetic Resonance Imaging (MRI) prostate images. In this paper, we propose two methods to normalize T2W-MRI prostate images: (i) based on a Rician a priori and (ii) based on a Square-Root Slope Function (SRSF) representation which does not make any assumption regarding the Probability Density Function (PDF) of the data. A comparison with the state-of-the-art methods is also provided. The normalization of the data is assessed by comparing the alignment of the patient PDFs in both qualitative and quantitative manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art methods

    Classification of SD-OCT Volumes using Local Binary Patterns: Experimental Validation for DME Detection

    Get PDF
    International audienceThis paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various pre-processings in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and non-linear classifiers, we tested the developed framework on a balanced cohort of 32 patients. Experimental results show that the proposed method outperforms the previous studies by achieving a Sensitivity (SE) and Specificity (SP) of 81.2% and 93.7%, respectively. Our study concludes that the 3D features and high-level representation of 2D features using patches achieve the best results. However, the effects of pre-processing is inconsistent with respect to different classifiers and feature configurations
    corecore