7 research outputs found

    Double site-bond percolation model for biomaterial implants

    Get PDF
    9 figures - 10 pagesWe present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones, and on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the implant and its evolution, and separate their biological or chemical origin from their physical one. We classify the various phenomena in the two regimes, percolating or nonpercolating, of the networks. We present first numerical results in two dimensions

    Modeling biomaterial transformations in a percolation model

    No full text
    Les biomatĂ©riaux interviennent dans de nombreuses applications mĂ©dicales. La connaissance de leur Ă©volution une fois implantĂ©s dans l’organisme est primordiale pour les amĂ©liorer et en crĂ©er de nouveaux. Dans cette optique, nous avons rĂ©alisĂ© une modĂ©lisation Ă  deux dimensions de la transformation d’un biomatĂ©riau en os. Pour cette modĂ©lisation, nous utilisons la thĂ©orie de la percolation. Celle-ci traite de la transmission d’information Ă  travers un milieu oĂč sont distribuĂ©s un trĂšs grand nombre de sites pouvant localement relayer cette information. Nous prĂ©sentons un modĂšle de double percolation sites-liens, pour prendre en compte d’une part la vascularisation (et/ou rĂ©sorption) du biomatĂ©riau de l’implant dans un os, et d’autre part sa continuitĂ© mĂ©canique. Nous identifions les paramĂštres pertinents pour dÂŽĂ©crire l’implant et son Ă©volution, qu’ils soient d’origine biologique, chimique ou physique. Les diffĂ©rents phĂ©nomĂšnes sont classĂ©s suivant deux rĂ©gimes, percolant ou non-percolant, qui rendent compte des phases avant et aprĂšs vascularisation de l’implant. Nous avons testĂ© notre simulation en reproduisant les donnĂ©es expĂ©rimentales obtenues pour des implants de corail. Nous avons rĂ©alisĂ© une Ă©tude des diffĂ©rents paramĂštres de notre modĂšle, pour dĂ©terminer l’influence de ceux-ci sur chaque phase du processus. Cette simulation est aussi adaptable Ă  diffĂ©rents systĂšmes d’implants. Nous montrons la faisabilitĂ© d’une modĂ©lisation Ă  trois dimensions en transposant la partie statique de notre simulation.Biomaterials play an important role in many medical applications. To know how they evolve once inserted in the human body is essential to improve them and to create new ones. For this purpose, we have elaborated a two dimensional model for the transformation of biomaterial into bone. For this model, we have used the percolation theory. This general theory accounts for the transmision of information across an environment in wich a huge number of sites relay localy this piece of information. We present a double site-bond percolation model to account, on the one hand, for the vascularization (and/or resorption) of biomaterial implant in bones and, on the other hand, for its mechanical continuity. We identify the relevant parameters to describe the implant and its evolution, and separate their biological or chimical origin from their physical one. We classify the various phenomena in two regimes, percolating or non-percolating, which concern the two stages before and after the vascularization of the implant. We have tested our simulation by comparing them with experimental results obtained withcoral implants. We have studied how the various parameters of our model can influence each stage of the process. This simulation can also be applied to different types of implants. We show that a three dimensional model is possible by transposing the static part of our simulation

    Modélisation de la transformation de biomatériaux par un modÚle de percolation

    No full text
    Biomaterials play an important role in many medical applications. To know how they evolve once inserted in the human body is essential to improve them and to create new ones. For this purpose, we have elaborated a two dimensional model for the transformation of biomaterial into bone. For this model, we have used the percolation theory. This general theory accounts for the transmision of information across an environment in wich a huge number of sites relay localy this piece of information. We present a double site-bond percolation model to account, on the one hand, for the vascularization (and/or resorption) of biomaterial implant in bones and, on the other hand, for its mechanical continuity. We identify the relevant parameters to describe the implant and its evolution, and separate their biological or chimical origin from their physical one. We classify the various phenomena in two regimes, percolating or non-percolating, which concern the two stages before and after the vascularization of the implant. We have tested our simulation by comparing them with experimental results obtained withcoral implants. We have studied how the various parameters of our model can influence each stage of the process. This simulation can also be applied to different types of implants. We show that a three dimensional model is possible by transposing the static part of our simulation.Les biomatĂ©riaux interviennent dans de nombreuses applications mĂ©dicales. La connaissance de leur Ă©volution une fois implantĂ©s dans l’organisme est primordiale pour les amĂ©liorer et en crĂ©er de nouveaux. Dans cette optique, nous avons rĂ©alisĂ© une modĂ©lisation Ă  deux dimensions de la transformation d’un biomatĂ©riau en os. Pour cette modĂ©lisation, nous utilisons la thĂ©orie de la percolation. Celle-ci traite de la transmission d’information Ă  travers un milieu oĂč sont distribuĂ©s un trĂšs grand nombre de sites pouvant localement relayer cette information. Nous prĂ©sentons un modĂšle de double percolation sites-liens, pour prendre en compte d’une part la vascularisation (et/ou rĂ©sorption) du biomatĂ©riau de l’implant dans un os, et d’autre part sa continuitĂ© mĂ©canique. Nous identifions les paramĂštres pertinents pour dÂŽĂ©crire l’implant et son Ă©volution, qu’ils soient d’origine biologique, chimique ou physique. Les diffĂ©rents phĂ©nomĂšnes sont classĂ©s suivant deux rĂ©gimes, percolant ou non-percolant, qui rendent compte des phases avant et aprĂšs vascularisation de l’implant. Nous avons testĂ© notre simulation en reproduisant les donnĂ©es expĂ©rimentales obtenues pour des implants de corail. Nous avons rĂ©alisĂ© une Ă©tude des diffĂ©rents paramĂštres de notre modĂšle, pour dĂ©terminer l’influence de ceux-ci sur chaque phase du processus. Cette simulation est aussi adaptable Ă  diffĂ©rents systĂšmes d’implants. Nous montrons la faisabilitĂ© d’une modĂ©lisation Ă  trois dimensions en transposant la partie statique de notre simulation

    Crimean-Congo hemorrhagic fever virus replication imposes hyper-lipidation of MAP1LC3 in epithelial cells.

    No full text
    International audienceCrimean-Congo hemorrhagic fever virus (CCHFV) is a virus that causes severe liver dysfunctions and hemorrhagic fever, with high mortality rate. Here, we show that CCHFV infection caused a massive lipidation of LC3 in hepatocytes. This lipidation was not dependent on ATG5, ATG7 or BECN1, and no signs for recruitment of the alternative ATG12-ATG3 pathway for lipidation was found. Both virus replication and protein synthesis were required for the lipidation of LC3. Despite an augmented transcription of SQSTM1, the amount of proteins did not show a massive and sustained increase in infected cells, indicating that degradation of SQSTM1 by macroautophagy/autophagy was still occurring. The genetic alteration of autophagy did not influence the production of CCHFV particles demonstrating that autophagy was not required for CCHFV replication. Thus, the results indicate that CCHFV multiplication imposes an overtly elevated level of LC3 mobilization that involves a possibly novel type of non-canonical lipidation
    corecore