475 research outputs found

    A Variation in the Cerebroside Sulfotransferase Gene is Linked to Exercise-Modified Insulin Resistance and to Type 2 Diabetes

    Get PDF
    Aims. The glycosphingolipid ÎČ-galactosylceramide-3-O-sulfate (sulfatide) is present in the secretory granules of the insulin producing ÎČ-cells and may act as a molecular chaperone of insulin. The final step in sulfatide synthesis is performed by cerebroside sulfotransferase (CST) (EC 2.8.2.11). The aim of this study was to investigate whether two single nucleotide polymorphisms (SNP), rs2267161 located in an exon or rs42929 located in an intron, in the gene encoding CST are linked to type 2 diabetes (T2D). Methods. As a population survey, 265 male and female patients suffering from T2D and 291 gender matched controls were examined. Results. A higher proportion of T2D patients were heterozygous at SNP rs2267161 with both T (methionine) and C (valine) alleles present (49.8% versus 41.3%, P = .04). The calculated odd risk for T2D was 1.47 (1.01–2.15, P = .047). Among female controls, the homozygous CC individuals displayed lower insulin resistance measured by HOMA-IR (P = .05) than the C/T or TT persons; this was particularly prevalent in individuals who exercise (P = .03). Conclusion. Heterozygosity at SNP rs2267161 in the gene encoding the CST enzyme confers increased risk of T2D. Females with the CC allele showed lower insulin resistance

    Prediction of the adhesive fillet size for skin to honeycomb core bonding in ultra-light sandwich structures

    Get PDF
    The formation of resin fillet between honeycomb core cell walls and skin in light sandwich structures was studied to gain a better understanding of the bonding process. A method was developed for tailoring the amount of adhesive between 8 and 80 g/m2. The size of the adhesive menisci and the contact angles between the adhesive and the skin and the core materials were measured. A model was developed to predict the size of the menisci, based on the surface energy of skin and honeycomb materials. When adhesive films were used for bonding, up to 50% of the adhesive did not form the menisci whereas 100 % did when the newly-developed adhesive deposition method was used, which allowed better bonding with lower weight

    Rapid processing of net-shape thermoplastic planar random composite preforms

    Get PDF
    A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow- moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat- set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40 s (for a plate 0.5 × 0.5 m2, weighing 2 kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40 wt.% GMT and has properties equivalent to those of 40 wt.% GMTex at both 20°C and 80°C

    VOID EVOLUTION DURING STAMP-FORMING OF THERMOPLASTIC COMPOSITES

    Get PDF
    SUMMARY: A thermoplastic stamp-forming process has been investigated using glass fibre (GF), carbon fibre (CF), and hybrid carbon-glass fibre fabric materials. For monolithic GF/PA6 and CF/PA66 materials, stamping pressure was the dominating variable to achieve high mechanical properties, low void contents, and minimal void content distributions across the stamped part. Use of a hybrid flow core material composed of CF/PA66 textile skins and a GF/PA66 random fibre core reduced this tendency such that tool temperature dominated the process. The increased local flow of the core layer accommodated the varying local superficial fabric density. Use of the flow core did not significantly affect flexural properties, but with a 29% and 17% drop in tensile modulus and strength. A substantial cost saving resulted from the use of a hybrid glass and carbon structure. In mould cycle times of 30s resulted for 3mm thick parts

    Curing Kinetics and Mechanical Properties of a Composite Hydrogel for the Replacement of the Nucleus Pulposus

    Get PDF
    A polymer material system has been developed to propose an injectable, UV and in situ curable hydrogel with properties similar to the native nucleus pulposus of intervertebral disc. Neat hydrogels based on TweenÂź 20 trimethacrylates (T3) and N-vinyl-2-pyrrolidone (NVP) and composite hydrogels of same composition reinforced by nano-fibrillated cellulose were synthesized with different T3 concentrations and their curing kinetics was investigated by photorheology using UV light. The T3 concentration has an influence on the time of curing and final shear stiffness of the material. NFC does not alter the time of curing but increases the final mechanical performance of the hydrogels for a same chemical composition. Hydrogel samples, neat and composite, were then tested in unconfined compression at different hydration stages and in confined compression and their elastic modulus was determined. The amount of fluid present in the network is mostly responsible for the mechanical properties and NFC fibres proved to be an efficient reinforcement. The elastic modulus ranged from 0.02 to 8 MPa. Biocompatibility studies showed that cells are confluent at 90% and do not show any morphology change when in contact with the hydrogel. The present hydrogel can therefore be considered for NP replacement

    Influence of substrate additives on the mechanical properties of ultrathin oxide coatings on poly(ethylene terephthalate)

    Get PDF
    The mechanical properties of ultrathin silicon oxide (SiOx ) coatings plasma-deposited on poly(ethylene terephthalate) (PET) films were investigated with particular attention paid to the effect of additives located in the superficial layers of the polymer substrate. The cohesive and adhesive properties of the thin oxide coating were derived from the analysis of fragmentation tests carried out in situ in a scanning electron microscope. The cohesive strength of the coating was determined assuming a Weibull probability of failure of the oxide, and the coating/substrate interfacial shear strength (IFSS) was calculated by means of a stress transfer analysis with a perfectly plastic interface. It was shown that the presence of additives in the superficial layers of PET substrates leads to a 20% decrease of the crack onset strain, which is due to an increase of the coating defect density, as revealed by means of atomic oxygen etching. The stress concentration induced by coating microdefects was modeled, and was shown to induce a decrease in the cohesive properties of the coating, which correlates with the observed decrease of crack onset strain. Moreover, the adhesion was found to be very high, with a IFSS higher than the substrate bulk shear stress at yield, irrespective of the presence of additives

    Time-intensity transformation and internal stress in UV-curable hyperbranched acrylates

    Get PDF
    The photocuring of three different highly functional acrylates—Di-pentaerythritol penta/hexaacrylate (DPHA) and two hyperbranched molecules (HBP), one with a stiff polyester and one with a more flexible polyether structure—was investigated by means of photorheology, photo differential scanning calorimetry, and beam bending. Special attention was paid to the influence of the composition of DPHA/HBP reactive blends and UV intensity on gelation and vitrification and the resulting dynamics of the internal stress. It was found that adding HBPs to DPHA did not influence gelation significantly, but shifted the onset of vitrification to higher conversions and thus caused lower internal stresses in the material. Increasing UV intensity increased both the conversion at vitrification, thus retarding the build-up of internal stresses, and the ultimate conversion, thus increasing the final stress level. The obtained conversion, gelation, and vitrification data were assembled into time-intensity transformation diagrams, thus providing a useful tool for optimizing photocuring

    Ultra-Light Asymmetric Photovoltaic Sandwich Structures

    Get PDF
    This work evaluated the possibility of using silicon solar cells as load-carrying elements in composite sandwich structures. Such an ultra-light multifunctional structure is a new concept enabling weight, and thus energy, to be saved in high-tech applications such as solar cars, solar planes or satellites. Composite sandwich structures with a weight of not, vert, similar800 g/m2 were developed, based on one 140 Όm thick skin made of 0/90° carbon fiber-reinforced plastic (CFRP), one skin made of 130 Όm thick mono-crystalline silicon solar cells, thin stress transfer ribbons between the cells, and a 29 kg/m3 honeycomb core. Particular attention was paid to investigating the strength of the solar cells under bending and tensile loads, and studying the influence of sandwich processing on their failure statistics. Two prototype multi-cell modules were produced to validate the concept. The asymmetric sandwich structure showed balanced mechanical strength; i.e. the solar cells, reinforcing ribbons, and 0/90° CFRP skin were each of comparable strength, thus confirming the potential of this concept for producing stiff and ultra-lightweight solar panels
    • 

    corecore