Composites: Part A 40 (2009) 1167-1173

Contents lists available at ScienceDirect conpasies

Composites: Part A

journal homepage: www.elsevier.com/locate/compositesa

Ultra-light asymmetric photovoltaic sandwich structures

Julien Rion?, Yves Leterrier?, Jan-Anders E. Manson **, Jean-Marie Blairon"

2 Laboratoire de Technologie des Composites et Polyméres (LTC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
b Solvay Research and Technology, Rue de Ransbeek 310, Brussels B-1120, Belgium

ARTICLE INFO ABSTRACT

Article history:

Received 10 June 2008

Received in revised form 10 March 2009
Accepted 3 May 2009

This work evaluated the possibility of using silicon solar cells as load-carrying elements in composite
sandwich structures. Such an ultra-light multifunctional structure is a new concept enabling weight,
and thus energy, to be saved in high-tech applications such as solar cars, solar planes or satellites. Com-
posite sandwich structures with a weight of ~800 g/m? were developed, based on one 140 um thick skin
made of 0/90° carbon fiber-reinforced plastic (CFRP), one skin made of 130 pum thick mono-crystalline sil-
icon solar cells, thin stress transfer ribbons between the cells, and a 29 kg/m> honeycomb core. Particular

ie}l/-lv(\;%redséomb attention was paid to investigating the strength of the solar cells under bending and tensile loads, and
A' Hybri):fl studying the influence of sandwich processing on their failure statistics. Two prototype multi-cell mod-
B. Fracture ules were produced to validate the concept. The asymmetric sandwich structure showed balanced

mechanical strength; i.e. the solar cells, reinforcing ribbons, and 0/90° CFRP skin were each of comparable
strength, thus confirming the potential of this concept for producing stiff and ultra-lightweight solar

Silicon solar cells

panels.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Saving natural resources and energy is one of the key challenges
of the 21st century. In transportation, the most effective way to
save energy is to diminish the moving mass, especially for aerial
transportation. So, decreasing the weight of the structure of air-
planes has become a main preoccupation for all aircraft construc-
tors, from the biggest commercial airplanes [1,2] (to reduce
running costs) to small private airplanes [3,4]. Therefore, compos-
ite sandwich structures are largely used in applications requiring
high strength and stiffness-to-weight ratios, such as in the aero-
nautical domain [3-6]. For more unusual applications, such as ul-
tra-light solar aircraft [7-9], competition solar cars, or satellite
solar panels, the weight of the structures has to be pared to the
absolute limit in order to save every gram. To this end, these ul-
tra-light sandwich structures have been extensively studied by
Rion et al. in order to understand the driving failure mechanisms
and their relation with processing [10-12]. This type of structure
was thus optimized, i.e. designed such that the failure loads of
the various components were similar [13,14].

In the above-mentioned applications, solar cells are often glued
onto very light sandwich panels which provide sufficient stiffness
[15-17]. In these designs, the solar cells add supplementary weight
to the sandwich structure, with negligible mechanical contribu-
tion. To save more weight, the possible use of the mono-crystalline
silicon (m-Si) solar cells to actually form the skin of the sandwich
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structure was investigated in the present work. The high elasticity
modulus of m-Si (130-190 GPa depending on crystallographic
direction) can provide very high stiffness to the sandwich struc-
ture. Furthermore, the thickness of such cells being in the range
130-300 um makes these compatible with classic carbon fiber-
reinforced plastic (CFRP) skins. However, despite the high intrinsic
strength of silicon (3-7 GPa depending on crystallographic direc-
tion [18,19]), its brittleness, and thus the low strength of the cells,
limits the load-carrying capacity of this structure. Also, due to their
finite size, a stress transfer device between the cells is required to
ensure stress continuity on the photovoltaic (PV) skin.

Several studies have been conducted on asymmetric sandwich
structures [20,21] as also on multifunctional structures [22,23],
but the present concept is completely new. This novel approach
was thus carefully studied, following three main steps. Firstly,
the strength of the solar cells was analyzed to identify design val-
ues for the asymmetric sandwich structure. Secondly, mechanical
analysis of solar cells integrated into the sandwich structure was
conducted to determine the influence of sandwich processing on
cell strength, either due to damage or to residual stresses. Finally,
curved multi-cell prototype modules were fabricated to demon-
strate the feasibility of producing curve-shaped panels to fit, for
example, wing profiles.

2. Materials and methods

The solar cells used were m-Si cells with 16.9% efficiency (S32,
AzurSpace Solar Power GmbH). The thickness of the cells was
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130+ 10 um and their dimensions were 74 mm x 31.9 mm. The
edges of the cells corresponded to the [100] and [0 1 0] crystal
directions. The active face of the cells had an inverted pyramid sur-
face texture in order to increase light absorption, especially for
light rays with a low incidence angle [24-26]. As Miinzer et al.
[27] had observed a decrease in strength due to surface texture,
the strength of the textured cells was compared to that of smooth
m-Si cells with no surface texture (RWE, 2PR/200-6540), 13.6% effi-
ciency, dimensions of 65x40mm? and a thickness of
200 + 40 pum. Both types of cell had a 3-11 um thick silver layer
on the back surface acting as a current collector.

The cells were first tested in 3-point bending with a 40 mm
span between the loading points. As cracks propagate mainly un-
der tension from surface and edge defects, the cells were tested
with either the silicon active side or the silver-coated side under
tension in order to investigate the quality of both front and rear
surfaces. A total of 40 textured cells and 10 smooth cells were
tested on each side.

When integrated as a skin in a sandwich structure, the solar
cells are loaded mainly under tension and compression. As silicon
cells are very brittle, the critical loading mode of the face is tensile
loading, which causes crack opening and propagation in the cells.
Compressive forces are less critical because the cracks do not tend
to propagate. As a tensile load is more severe than a compressive
load, the cells were tested under tension. The major problem with
this test was to introduce the force in the cell without breaking it
too early. This was solved by using steel plates with a beveled edge
glued onto the cells, as depicted in Fig. 1. The load was introduced
into the plate with pins, allowing rotation and self-alignment of
the loaded cell, thus minimizing the edge effects on the cell. The
loading rate was 0.2 mm/min. A total of 40 solar cells of the S32
type were tested.

Three different asymmetric sandwich structures were fabri-
cated. Sandwich beams with a single cell on one face were fabri-
cated to test the influence of sandwich processing on the
mechanical properties of the cell. Sandwich beams with two cells
on one face were produced to test the local reinforcement between
cells. Two curved multi-cell modules, one with with four-cells and
one with eight cells were eventually produced to demonstrate the
feasibility of the asymmetric sandwich concept. As the goal of the
study was to produce the lightest possible sandwich panels, carbon
fibers, which have the highest strength- and stiffness-to-weight
ratio amongst reinforcing fibers were chosen for the second face.
The CFRP faces were made of stacks of a 70 pm thick unidirectional
(UD) carbon fiber pre-impregnated laminate (so-called prepreg,
with a 35 wt% EH84 epoxy matrix from Hexcel). The core was an
8 mm thick, 29 kg/m> Nomex honeycomb with a 3.2 mm cell size
(Euro-Composite). Core-to-skin bonding was ensured by 50 g/m?
epoxy adhesive film (VTA260, Advanced Composite Group).

The sandwich beams were 32 mm wide (width of one cell) by
460 mm long. Their detailed structure is depicted in Fig. 2. One skin
was made of three layers of UD carbon prepreg (0/90/0°). This skin
was voluntarily over-designed to ensure the failure of the solar cell
side, hence enable studying the strength of the solar cell face. A
detailed study of the CFRP face failure is reported in [12]. The other

Fig. 1. Tensile test specimen for S32 m-Si solar cell with beveled steel plates.
Failure of the cell along the [111] direction is evident.
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Fig. 2. Schematic lay-up of the sample with two solar cells as skin.

skin was composed of one or two solar cells in the middle of the
beam, and three layers of prepregs (0/90/0°) on each side of the
cells. The two 0° plies overlapped the cell by 5 mm in order to en-
sure good stress transfer. No prepreg was present below the cells,
which in fact formed the skin of the sandwich. To ensure stress
transfer between the two adjacent cells, a 10 mm long ribbon of
UD carbon prepreg was placed in the gap under the two cells. It
should be noted that this CFRP ribbon cannot be used for electri-
cally working panels, since the carbon fibers in contact with the
cells would cause a short-circuit. Therefore, on the curved module
with eight cells connected electrically, 100 g/m? glass fibers fabric
was used as reinforcing ribbon.

When sandwich panels with a honeycomb core are manufac-
tured in a single step using vacuum processing, the pressure in
the core is not well-controlled because the honeycomb cells are
closed by both skins, and air circulation is difficult [12]. The sand-
wich samples were thus produced in two steps in order to control
the pressure in the honeycomb cells during the first step. The first
cure was made with the solar cell and adjacent prepreg layers laid
on the aluminum mold, with the honeycomb on top. The upper
side of the honeycomb was open, so that the relative pressure in
the honeycomb cell could be controlled. It was fixed either at
-0.9 bar for 18 samples with one cell, or at —0.3 bar for 12 samples
with one cell, in order to observe the effect of processing pressure
on the strength of the structure and on the morphology of the
adhesive menisci between skin and honeycomb cell walls. The
three samples with two cells were cured at —0.9 bar. The second
skin was cured in a second step, on the vacuum bag side, so that
the solar cells on the mold side were not damaged. The same pres-
sure was used in both steps. Cross-sections of the sandwich beams
were embedded in an acrylic resin and polished in order to carry
out microscopic observations under bright field illumination, as
shown in Fig. 3. The resin fillets between honeycomb cell walls
and skins formed properly on both the CFRP and silver face of

Fig. 3. Cross-section of the solar sandwich structure embedded in polishing resin,
with the solar cell face up (a) and CFRP face down (b). Curing was carried out with
—0.9 bar relative pressure in the vacuum bag. The inverted pyramid texture of the Si
surface, two honeycomb cell walls, and resin menisci are visible.
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Fig. 4. 3-Point bending test on a 130 um thick m-Si solar cell.

the solar cells, thus ensuring a good core-to-skin bonding [10,28].
Taking into account the size of the fillets, an equivalent adhesive
weight of approximately 30 g/m? was calculated with the model
developed in [10]. It showed that nearly half of the adhesive film
remained on the surface of the solar cell or CFRP skin, as can be
observed in Fig. 3. This demonstrates the interest of using the
adhesive deposition method on honeycomb [10] in order to lay
the adhesive directly where the menisci form.

The beams were tested in 4-point bending with a 400 mm span
between the outer supports and a 100 mm span between the load-
ing points, and the solar cells centered on the set-up. Samples with
a single solar cell were tested with the solar cell under tension. In
order to test the reinforcing ribbon between the cells, one sample
with two cells was tested with cells under tension, and the two
others with the cells under compression.

3. Mechanical analysis of solar cells
3.1. Bending and tensile strength of bare m-Si cells

Fig. 4 shows a bent single S32 cell under 3-point bending. Con-
siderable deflection is evident, which was possible due to the small
thickness/length ratio of the cell. This invalidated the use of simple
linear beam theory in order to calculate the bending moment and
thus the stress on the cells. The model developed by Schoenfelder
et al. [29] was therefore used to take the large deflections into
account.

In order to calculate the stresses, the thickness needs to be
known accurately. In fact, the thickness of the cell includes the
thickness of the silver backing, the texture height, and the thick-
ness of the front silver grid, as sketched in Fig. 5. To find an
adequate mean value for the cell thickness, the slope B of the

| i

Back silver collector H Front silver grid ‘

load-displacement curve during the 3-point bending test was
measured in the linear part (i.e. at small displacements). As the
thickness does not change during bending, the calculation of the
thickness made at small displacements is valid at large deforma-
tion. Using linear beam theory, which is valid at small displace-
ments, this slope was related to the thickness of an equivalent
homogenous silicon rectangular section as follows:

o 1 Ls

P~ B 4EgBC,

(1)

with ¢ the displacement of the loading point, P the load, L the span,
Es; the Young’s modulus of Si in [1 0 0] direction (equal to 130 GPa),
B the width of the cell, and t;, the thickness of the equivalent
homogenous silicon rectangular section, which writes as:

p
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The mean stress on the cell surface was calculated with this equiv-
alent thickness. The slight influence of the silver backing on the rear
side and the silver grid was disregarded, as explained in the
following.

The total thickness of the textured cells as measured with a
micrometer was found to be 133 pum, while the equivalent thick-
ness, calculated to match the measured bending stiffness, was
16 um smaller, that is, between the total thickness and the thick-
ness without the texture height. For smooth cells, the mean mea-
sured thickness was 240 um, while the equivalent thickness
calculated was 5 pum smaller. A probabilistic approach based on
the Weibull distribution was adopted in order to analyze the
failure data of the brittle solar cells:

P (i 7n0.5> 3

where P; is the failure probability of the ith ranked specimen and n
is the total number of tested specimens. The Weibull parameters
were calculated from the linear fit of the measured failure data as
shown in Fig. 6 and summarized in Table 1. The corresponding fail-
ure probabilities are given by:

Pf —1—-e <%>m (4)

where m is the Weibull modulus and o the stress corresponding to
63% failure probability. The failure probabilities are represented in
Fig. 7.

The mean strengths measured were approximately 10% of the
intrinsic strength of Si(111) [19], thus demonstrating the pres-
ence of defects causing stress concentrations. The textured solar
cells failed at a slightly higher stress when the textured side was
under compression rather than under tension. There was no dra-
matic reduction of strength due to stress concentrations caused
by the texture. The slightly higher strength when the silver-coated

A

I\ Texture height 268 pm |

| Measured thickness t___=~133 pm ‘

meas
V3311 mag

Fig. 5. Schematic cross-section of the textured m-Si solar cell.
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Fig. 6. Weibull analysis for textured cells under tension and bending (left), and smooth cells in bending (right).

Table 1
Weibull parameters and mean stress at failure calculated from the failure data of the
textured and smooth cells in bending and of the textured cells under tensile load.

Bending: type of cell, side under tension Weibull modulus ao @
(m) (MPa) (MPa)
Textured, Si active front side 5.56 458 423
Textured, silver-coated backing 2.61 543 483
Smooth, Si active front side 3.90 399 361
Smooth, silver-coated backing 2.30 458 407
Tension
Bare cells 5.11 240 221
Integrated cells 4.46 243 221

backing was under tension was partly due to the fact that the silver
layer also carried part of the tensile stresses. In fact, accounting for
the presence of silver layer, and assuming that it deforms elasti-
cally (Eag =78 GPa) reduces the calculated stress in the silicon on
the silver side by 3% and 12% for 3 pum and 11 pm thick silver layer,
respectively. In case the silver layer deformed plastically, the stress
reduction in the silicon would be less pronounced. Stress in the sil-
icon on the textured side was scarcely changed by taking the silver
layer into account (less than 0.2% difference). But as the thickness
of silver was not precisely known for each cell, the exact contribu-
tion could not be calculated. Another explanation for the very sim-
ilar strength of both front and rear surfaces, despite different
treatments, is that critical defects could be created on the edges
of the cell during dicing [29]. The similar strength of textured
and smooth sides is contrary to the measurements of Miinzer
et al. [27]. In fact, these authors measured the strength by point-
loading [30] and did not take into account edge defects, which
are not influenced by surface treatment. Moreover, they used dif-
ferent textures, which could create more severe stress concentra-
tions. This issue will be further investigated using numerical
simulations in a following section.

The Weibull modulus was higher, i.e. the scatter of strength val-
ues was smaller when the texture was under tension. This can be
explained by the very regular etching of the textured face, remov-
ing most of the defects up to a given size. The size of the defects on
the back-side was less controlled and more varied, causing higher
scatter.

Even though the surface was not textured, similar behavior was
measured on the smooth cells. The strength was slightly higher
with the silver-coated backing under tension, but the scatter was
also more pronounced. This may also be explained by a more care-
ful etching of the front surface, thereby reducing scatter on this
side, and also by the reinforcing effect of the silver layer on the
back-side. The reduction of strength when the front face was under
tension may also be partly due to the stresses caused by the silver
grid deposition on the front side, as reported by Schneider et al.
[31] who observed up to 30% strength reduction.

The strength of the smooth cells was lower than that of textured
cells. The latter were thinner, and the present results demonstrate
the positive influence of polishing and etching with further
removal of defects and resulting increase of the strength in accor-
dance with the results of Kray et al. [32]. This also confirms that the
texturing process was not responsible for the low strength of the
cells compared to the intrinsic strength of silicon, but that more
critical defects were present in the solar cell.

Under tensile loading, all the cells broke at a 45° angle to the
loading direction, as observed on the broken sample in Fig. 1,
which is the maximum shear direction and the weak (11 1) plan
of Si crystal. Their tensile strength was calculated from the failure
load Fp,,x measured during tensile testing as:

Fmax
¢ Bttens (5)
where B is the width of the cell, and t;,s is an equivalent thickness,
equal to the cell thickness minus the height of the pyramids. The
calculated strength provides a slightly overestimated mean value,
which nevertheless is representative of the stress in the most
loaded zones.

The Weibull failure distribution of the textured cells under ten-
sion is presented in Fig. 7, with a mean tensile strength equal to
221 MPa. This value is almost two times lower than that measured
under bending, which could be due to several factors. Firstly, a
slight misalignment of the tensile loading set-up can induce stress
concentrations on one edge and reduce the load-carrying capacity.
Secondly, the loaded volume was larger in the tensile test com-
pared to the bending test, with resulting reduced mean strength
for a given critical defect distribution. This is consistent with the
Weibull modulus which was found to be equal to 5.11, that is, very
close to the value measured under bending with the active Si side
under tension. The 95% survival level, calculated with the Weibull
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Fig. 7. Failure probability of smooth and textured solar cells under tension

(textured cells only, bare or integrated into sandwich structures), or in bending
with either front or back-side under tension.
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probability curve under tension, was 136 MPa. This value can be
considered as a basic design value for the asymmetric sandwich
structure.

3.2. Tensile strength of m-Si cells integrated into sandwich structures

All sandwich beams with one cell broke under bending due to
tensile failure of the cell. The equivalent thickness used to calculate
the stress in the cell was the same as for the tensile tests, i.e. the
mean measured thickness minus the pyramid height. The mean
stress and Weibull modulus calculated for the 18 samples cured
with 0.9 bar pressure (as reported in Table 1) corresponded exactly
to the values measured during tensile tests. The Weibull probabil-
ity curves for both loading cases shown in Fig. 7 are in fact almost
identical. This clearly indicated that sandwich processing did not
damage the cells, and that residual stresses were not critical. This
was further confirmed by the analysis of the 12 samples produced
with reduced process pressure of 0.3 bar, with a strength equal to
211 £ 59 MPa.

The mean load per unit width in the cell at failure for the sam-
ples cured with 0.9 bar pressure was Nce =23 =6 N/mm. This
value is close to the line load causing compressive failure of a
0/90° CFRP skin due to local instability, equal to 28 N/mm [12].
However, the 95% survival stress level of 136 MPa calculated in
the previous section corresponds to a line load of 14.3 N/mm,
which represents a design limit for ultra-light asymmetric PV mod-
ules. The complete design of a large-size panel should also take
into account the probabilistic failure load distribution of the cells,
in order to minimize the risk of complete failure of the panel.

When the beams with two cells were tested with the cells under
tension, failure was due to tensile failure of the cells, showing that
the very thin stress transfer ribbon was strong enough for tensile
loading. When the solar cell face was under compression, the
beams failed due to compressive failure of the ribbon at a mean
stress of 396 MPa corresponding to a line load of 27.7 N/mm. This
value is larger than the maximum line load supported under ten-
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sion by the cell, and this is therefore sufficient to build panels with
symmetrical strength. The present carbon fiber-reinforced ribbons
should be replaced by glass fiber-reinforced ribbons of comparable
mechanical properties to avoid electrical short-circuits in operat-
ing PV modules.

3.3. Numerical analysis of stress concentrations in textured solar cells

In order to further investigate the experimental failure data of
the cells a numerical analysis of stress concentrations in the tex-
tured cells was carried out. Fig. 8 shows the inverted pyramid sur-
face texture of the m-Si cells produced by photolithography and
selective etching [33] of the silicon and resulting stress concentra-
tion at sharp corners. The corresponding reduction of tensile
strength of the textured surface is a well-known phenomenon
already studied in [27]. Since the magnitude of this effect depends
on the texture geometry, scanning electron microscope imaging
was used for accurate measurement of the texture (Fig. 8a) and
radius of curvature of the sharp corner from a section of a broken
cell (Fig. 8b). The average curvature radius of the pyramid tips over
10 measurements was found to be equal to 357 nm. This value was
used for the fillet radius of all the sharp edges in a finite element
model (FEM, Abaqus®) of the textured surface. To investigate the
influence of fillet radius, simulations were also conducted with
double and half size radii. A computer assisted design model of
the highly regular texture was constructed (Fig. 8c). For the numer-
ical analysis of stress concentrations resulting from the texture, the
silicon cell was represented by a single texture unit. In the FEM
simulation, the problem had to be solved at two different scales
(100 pm thick cells and several 100 nm curvature radius of the tex-
ture). A sub-modeling technique was therefore used. A first model
was built with element sizes adapted to the global cell scale. This
was used to calculate the displacement field near the region of
interest, i.e. the sharp edges in texturation, when the cell was
under tensile loading or cylindrical bending. A second model, rep-
resenting only the region of interest, was then constructed, with

ax. Principal
+ Crit.: 75W)
+3.550502

431260002

step: flexion d
Increment 11: Step Time = 1.000
Primary var: §, Max. Principal

7 Deformed Var: U Deformation Scale Factor: +1.004+00
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Fig. 8. Electron micrograph of the top view of the inverted pyramid surface texture of a S32 m-Si cell (a; the two lines at 45° are electric contacts) and of the tip of the corner
between two pyramids observed on a cross-section of a broken solar cell parallel to the texture axis (b). CAD model of the pyramidal texture of the solar cell (c). Stress state in

a single texture unit in a cell bend to a radius of curvature of 10 cm (d).
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Table 2
Stress concentration factor 4 due to the texture of the surface with different fillet radii
in the texture.

Fillet radius Infinite (no texture) 714 nm 357 nm 179 nm
/. tensile loading 1 6.4 7.8 124
/ bending 1 5.6 6.8 10.7

very fine elements allowing accurate stress calculation at the sharp
edges. The displacement obtained as a result of the first global
model was applied in this second model. For the silicon material,
an orthotropic material with diamond symmetry was used with
the following elastic constants: C;; =166 GPa, C;; =64 GPa and
C44 = 79.6 GPa. Maximal stresses were identified in the stress con-
centration area at the sharp edges of the texture (Fig. 8d), and the
stress concentration factor is given in Table 2 by the ratio 4
between the maximal stress and the mean stress without texture.

The stress concentration factors were similar in bending and
tensile loading. They increased rapidly when the radius became
smaller. Considering a fillet radius of 357 nm and an intrinsic
strength of 4 GPa for silicon, the cell would break at a mean stress
of 513 MPa under tension and 588 MPa under bending due to the
stress concentration effects. As the mean measured tensile and
bending stresses were smaller (221 MPa and 423 MPa, respec-
tively), the present analysis implies that other, more critical,
defects were present in the cells, causing early failure. This con-
firms the results of the bending tests, showing little difference
between the strength of the textured and flat faces.

4. Multi-cell modules

In order to prove the feasibility of manufacturing curved asym-
metric sandwiches with solar cells as a skin, two prototype mod-
ules with four and eight cells were produced, as shown in Fig. 9.
The cells were fixed together with adhesive tape on the Si side
and with a 1 mm gap in-between and placed in an Al mold with
a simple curvature of 2 m~!. Small pieces of adhesive tape were
placed at the cells corners in the case of the four-cell module,
which resulted in local damage of the cells during processing. For
this reason, continuous strips of the adhesive tape were used to
maintain the cells in place in the eight-cells module, and this
avoided cell damage. The adhesive tape would be unnecessary in
case the cells would be glued on an encapsulation film and con-
nected electrically to each other. Reinforcing 10 mm-wide CFRP
ribbons for the four-cells module, and glass fibers ribbons for the
eight-cells module were placed over the gaps around the cells on
the Ag side, and a 0/90° prepreg layer was adjusted around the
cells with a 5 mm overlap on the edges of the cells. As in the case
of sandwich beams, no prepreg was present below the cells, which
again formed the skin of the sandwich. Adhesive film (50 g/m?)
was laid over the cells, and the honeycomb core was then placed
on top, and closed using the 0/90° prepreg skin with 50 g/m? adhe-
sive. The assembly was cured under a vacuum bag with —0.7 bar
relative pressure. The sandwich constituents including the cells
bent following the curvature of the mold when vacuum was
applied and the produced modules were curved after curing and
demolding.

The cells in the two modules did not break during manufactur-
ing due the curvature, but as mentioned above cells in the four-
cells module broke locally where the adhesive tapes were placed.
This underlined the need to have a very regular molding surface,
which should be achieved with an encapsulation film to protect
the cells against environmental attacks [34,35]. This was not in-
cluded in the present work. The photovoltaic performance of the
eight-cells module was not measured but it was verified that the

Fig. 9. Curved prototype sandwich modules with 4 (top) and 8 (bottom) integrated
m-Si S32 solar cells as a skin.

electrical continuity of the cells was not compromised by the
manufacture process. The prototype panel confirmed the possibil-
ity of producing stiff curved-shape PV modules with a weight of
~800 g/m?, and this opens the way for multiple uses of this new
type of structure. A symmetric sandwich structure with solar cells
glued on one face, with stiffness and strength properties similar to
the multi-cell modules will weight about 200 g/m? more. The
present asymmetric design enables a 20% weight reduction for
ultra-light sandwich panels and is thus very interesting for light
and stiff structures submitted to small loads.

5. Conclusions

The concept of an asymmetric photovoltaic sandwich structure
comprising one skin made of solar cells was evaluated. The
strength of mono-crystalline Si solar cells in 3-point bending was
found to be equal to 420 MPa, which is approximately 10% of the
intrinsic strength of Si(1 1 1). Cell strength was similar when mea-
sured in bending with the textured side under tension or compres-
sion, as well as with the smooth cells without texture. This result,
combined with a FEM simulation of stress concentration factors
showed that the inverted pyramids texture of the solar cells was
not responsible for their early failure and that more severe defects
caused the failure of the cell. The mean tensile strength of the cell
was found to be 221 MPa. The strength of the cells was unchanged
when integrated into the sandwich structure, thus confirming the
process compatibility of the cells, and the low residual stresses.

Two prototype multi-cell modules were manufactured including
fourand eight cells and thin stress transfer ribbons. The ribbons were
strong enough to enable large-size flat or curved panels to be built.
The asymmetric sandwich structure showed balanced strength
properties, the strength of the solar cells, reinforcing ribbon, and 0/
90° CFRP skin being similar, thus underlining the potential of this
concept for producing stiff and ultra-lightweight solar panels. The
interesting mechanical properties identified in bending with corre-
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sponding 20% weight savings compared to traditional symmetric de-
signs have to be confirmed once final application and loading cases
are defined and the structure optimized to this end. Furthermore, a
scale-up of the process and real size panel testing has to be made
to confirm the suitability of the asymmetric concept for defined
loading case. A detailed reliability analysis has moreover to be con-
ducted by taking into account the strength scatter of the cells in or-
der to build panels with satisfying security factors.

Acknowledgements

The authors wish to acknowledge the EPFL and Swiss Innova-
tion Promotion Agency (CTI, #8002.1, DCPP-NM) for financial
support.

References

[1] Beral B. Airbus structure and technology - next steps and vision. In:
Proceedings of 16th international conference on composite materials. Kyoto;
2007.

[2] Roesler WG, Sarh B, Kismarton MU. Composite structures: the first 100 years.
In: Proceedings of 16th international conference on composite materials.
Kyoto; 2007.

[3] Funke H. Systematische entwicklung von ultra-leichtbaukonstruktionen in
faserverbund-wabensandwichbauweise am beispiel eines kleinflugzeuges.
PhD Thesis. Universitdt-GH Paderborn; 2001

[4] Funke H. Development of the ultralight aircraft silence. JEC - Compos
2004;10:52-4.

[5] Middleton DH. Composite materials in aircraft structures. Harlow: Longman;
1990.

[6] Rozant O, Bourban PE, Manson ]-AE. Manufacturing of three dimensional
sandwich parts by direct thermoforming. Compos Part A: Appl Sci Manufact
2001;32(11):1593-601.

[7] Baldock N, Mokhtarzadeh-Dehghan MR. A study of solar-powered, high-
altitude unmanned aerial vehicles. Aircraft Eng Aerosp Technol
2006;78(3):187-93.

[8] Cestino E. Design of solar high altitude long endurance aircraft for multi
payload and operations. Aerosp Sci Technol 2006;10(6):541-50.

[9] Romeo G, Frulla G, Cestino E, Heliplat Corsino G. Design, aerodynamic,
structural analysis of long-endurance solar-powered stratospheric platform. ]
Aircraft 2004;41(6):1505-20.

[10] Rion J, Demarco F, Leterrier Y, Manson J-AE. Damage analysis of ultralight
sandwich structures. In: Proceedings of 16th international conference on
composite materials. Kyoto; 2007.

[11] Rion ], Geiser A, Leterrier Y, Manson J-AE. Ultralight composite sandwich
structure: optimization of skin to honeycomb core bonding. In: Proceedings of
27th international conference of SAMPE Europe. Paris; 2006.

[12] Rion ], Stutz S, Leterrier Y, Manson J-AE. Influence of process pressure on local
facesheet instability for ultralight sandwich structures. In: Proceedings of 8th

international conference on sandwich structures, Porto. J Sandwich Struct
Mater; in press.

[13] Triantafillou TC, Gibson LJ. Minimum weight design of foam core sandwich
panels for a given strength. Mater Sci Eng 1987;95:55-62.

[14] Triantafillou TC, Gibson LJ. Failure mode maps for foam core sandwich beams.
Mater Sci Eng 1987;95:37-53.

[15] Japanese patent 2002353489 a: Sandwich panel for mounting solar cell,
06.12.2002.

[16] German patent 197 15 788 c1: Solargenerator fiir satelliten, 08.10.1998.

[17] United states patent 4.394.529: Solar cell array with lightweight support
structure, 19.07.1983.

[18] Petersen KE. Silicon as a mechanical material. Proc IEEE 1982;70:420-57.

[19] Kozhushko VV, Hess P. Anisotropy of Si studied by a laser based contact free
method. Phys Rev B 2007;76(14):144105-11.

[20] Castanie B, Barrau JJ, Jaouen JP. Theoretical and experimental analysis of
asymmetric sandwich structures. Compos Struct 2002;55(3):295-306.

[21] Kim ], Swanson SR. Effect of unequal face thickness on load resistance of
sandwich beams. ] Sandwich Struct Mater 2004;6(2):145-66.

[22] Jeon JH, Hwang W, Park HC, Park WS. Buckling characteristics of smart skin
structures. Compos Struct 2004;63(3-4):427-37.

[23] You CS, Hwang W, Park HC, Lee RM, Park WS. Microstrip antenna for sar
application with composite sandwich construction: surface-antenna-
structure demonstration. ] Compos Mater 2003;37(4):351-64.

[24] Nussbaumer H, Willeke G, Bucher E. Optical behavior of textured silicon. ] Appl
Phys 1994;75(4):2202-9.

[25] Smith AW, Rohatgi A. A new texturing geometry for producing high-efficiency
solar-cells with no antireflection coatings. Sol Energy Mater Sol Cells
1993;29(1):51-65.

[26] Zhao JH, Wang AH, Green MA, Ferrazza F. 19.8% Efficient “Honeycomb”
textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl
Phys Lett 1998;73(14):1991-3.

[27] Munzer KA, Holdermann KT, Schlosser RE, Sterk S. Thin monocrystalline silicon
solar cells. IEEE Trans Electron Dev 1999;46(10):2055-61.

[28] Okada R, Kortschot MT. The role of the resin fillet in the delamination of
honeycomb sandwich structures. Compos Sci Technol 2002;62(14):1811-9.

[29] Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn ]. Investigations of
the influence of dicing techniques on the strength properties of thin silicon.
Microelectron Reliab 2007;47(2-3):168-78.

[30] Behnken H, Apel M, Franke D. Simulation of mechanical stress during bending
tests for crystalline wafers. In: Proceedings of 3rd world conference on
photovoltaic energy conversion. Osaka, Japan; 2003.

[31] Schneider A, Biihler G, Huster F, Peter K, Fath P. Impact of individual process
steps on the stability of silicon solar cells studied with a simple mechanical
stability tester. In: Proceedings of conference on PV in Europe from PV
technology to energy solutions. Rome; 2002.

[32] Kray D, Kampwerth H, Schneiderléchner E, Grohe A, Glunz SW. Comprehensive
experimental study on the performance of very thin laser-fired high-efficiency
solar cells. In: Proceedings of 19th European photovoltaic solar energy
conference. Paris; 2004.

[33] Juvonen T, Harkonen ], Kuivalainen R. High efficiency single crystalline silicon
solar cells. Phys Scripta 2002;T101:96-8.

[34] Nowlan MJ, Maglitta JC, Darkazalli G, Lamp T. Ultralight photovoltaic modules
for unmanned aerial vehicles. In: Proceedings of 26th PVSC. Anaheim; 1997.

[35] Snowdon D, Green ], Cousins P, Stone S. Composite curved laminates for the
UNSW sunswift II solar array. In: Proceedings of solar world congress; 2001.



	Ultra-light asymmetric photovoltaic sandwich structures
	Introduction
	Materials and methods
	Mechanical analysis of solar cells
	Bending and tensile strength of bare m-Si cells
	Tensile strength of m-Si cells integrated into sandwich structures
	Numerical analysis of stress concentrations in textured solar cells

	Multi-cell modules
	Conclusions
	Acknowledgements
	References


