101 research outputs found

    Coronal Magnetic Field Measurement from EUV Images made by the Solar Dynamics Observatory

    Get PDF
    By measuring the geometrical properties of the coronal mass ejection (CME) flux rope and the leading shock observed on 2010 June 13 by the Solar Dynamics Observatory (SDO) mission's Atmospheric Imaging Assembly (AIA) we determine the Alfv\'en speed and the magnetic field strength in the inner corona at a heliocentric distance of ~ 1.4 Rs. The basic measurements are the shock standoff distance (deltaR) ahead of the CME flux rope, the radius of curvature of the flux rope (Rc), and the shock speed. We first derive the Alfv\'enic Mach number (M) using the relationship, deltaR/Rc = 0.81[(gamma-1) M^2 + 2]/[(gamma+1)(M^2-1)], where gamma is the only parameter that needed to be assumed. For gamma =4/3, the Mach number declined from 3.7 to 1.5 indicating shock weakening within the field of view of the imager. The shock formation coincided with the appearance of a type II radio burst at a frequency of ~300 MHz (harmonic component), providing an independent confirmation of the shock. The shock compression ratio derived from the radio dynamic spectrum was found to be consistent with that derived from the theory of fast mode MHD shocks. From the measured shock speed and the derived Mach number, we found the Alfv\'en speed to increase from ~140 km/s to 460 km/s over the distance range 1.2 to 1.5 Rs. By deriving the upstream plasma density from the emission frequency of the associated type II radio burst, we determined the coronal magnetic field to be in the range 1.3 to 1.5 G. The derived magnetic field values are consistent with other estimates in a similar distance range. This work demonstrates that the EUV imagers, in the presence of radio dynamic spectra, can be used as coronal magnetometers.Comment: 25 pages, 6 figures, 2 table

    Vesistötietoa näytteenottajille

    Get PDF
    Opas antaa vesinäytteitä ottaville yleistietoa Suomen vesistöjen erityispiirteistä, vesistöjen tilan tutkimuksesta sekä näytteenoton tavanomaisimmista kysymyksistä. Näytteenoton tarpeellisina taustatietoina on selostettu järven lämpötalous, kaasutalous, ravinnetalous, rehevöityminen ja plankton. Näitä tarkastellaan näytteenottoon ja näytteistä tehtävien määritysten kannalta. Näytteiden oton tavoitteena on, että näytteet edustavat mahdollisimman hyvin sitä paikkaa, aluetta ja tilannetta, joka vastaa kyseisen tutkimus- tai seurantaohjelman tarkoitusta. Tämä edellyttää näytteenottajalta riittäviä tietoja työskentelyalueensa vesiluonnosta ja vesivaroista sekä niiden ominaisuuksista, joita oppaan vesistötieto-osassa on kuvattu.Oppaan kenttätutkimusosassa annetaan käytännön tietoa näytteenottoon valmistautumisesta sekä keskeisimmistä fysikaalisista, kemiallisista ja biologisista näytteenotto- ja havaintomenetelmistä sekä niiden soveltamisesta joki-, järvi- ja rannikkoalueilla. Lisäksi tarkastellaan kasviplanktonin, pohjaeläinten, päällyskasvuston ja pohjasedimenttinäytteenoton erityispiirteitä sekä vesikasvi-, kala- ja uimavesitutkimusten tekemistä. Näytteenottajan huomiota pyritään kiinnittämään myös näytteenoton virhemahdollisuuksiin ja virheiden välttämiseen. Oppaan liiteosassa on kattava luettelo vesitutkimusten näytteenoton jo valmistuneista ja valmisteilla olevista standardeista v. 2007 lopun tilanteessa

    IS Reviews 1991

    Get PDF

    On the Directivity of Low-Frequency Type IV Radio Bursts

    Get PDF
    An intense type IV radio burst was observed by the STEREO Behind (STB) spacecraft located about 144 degres behind Earth. The burst was associated with a large solar eruption that occurred on the backside of the Sun (N05E151) close to the disk center in the STB view. The eruption was also observed by the STEREO Ahead (STA) spacecraft (located at 149 degrees ahead of Earth) as an eruption close to the west limb (N05W60) in that view. The type IV burst was complete in STB observations in that the envelope reached the lowest frequency and then receded to higher frequencies. The burst was partial viewed from STA, revealing only the edge coming down to the lowest frequency. The type IV burst was not observed at all near Earth because the source was 61 degrees behind the east limb. The eruption was associated with a low-frequency type II burst observed in all three views, although it was not very intense. Solar energetic particles were also observed at both STEREOs and at SOHO, suggesting that the shock was much extended, consistent with the very high speed of the CME (about 2048 km/s). These observations suggest that the type IV emission is directed along a narrow cone above the flare site. We confirm this result statistically using the type IV bursts of solar cycle 23.Comment: 4 pages, 4 figures, contributed paper to b presented at the URSI Asia-Pacific Radio Science Conference in Seoul, August 21-25, 201
    corecore