14 research outputs found

    Biogeophysical impacts of peatland forestation on regional climate changes in Finland

    Get PDF
    Land cover changes can impact the climate by influencing the surface energy and water balance. Naturally treeless or sparsely treed peatlands were extensively drained to stimulate forest growth in Finland over the second half of 20th century. The aim of this study is to investigate the biogeophysical effects of peatland forestation on regional climate in Finland. Two sets of 18-year climate simulations were done with the regional climate model REMO by using land cover data based on pre-drainage (1920s) and post-drainage (2000s) Finnish national forest inventories. In the most intensive peatland forestation area, located in the middle west of Finland, the results show a warming in April of up to 0.43 K in monthly-averaged daily mean 2 m air temperature, whereas a slight cooling from May to October of less than 0.1 K in general is found. Consequently, snow clearance days over that area are advanced up to 5 days in the mean of 15 years. No clear signal is found for precipitation. Through analysing the simulated temperature and energy balance terms, as well as snow depth over five selected subregions, a positive feedback induced by peatland forestation is found between decreased surface albedo and increased surface air temperature in the snow-melting period. Our modelled results show good qualitative agreements with the observational data. In general, decreased surface albedo in the snow-melting period and increased evapotranspiration in the growing period are the most important biogeophysical aspects induced by peatland forestation that cause changes in climate. The results from this study can be further integrally analysed with biogeochemical effects of peatland forestation to provide background information for adapting future forest management to mitigate climate warming effects. Moreover, they provide insights about the impacts of projected forestation of tundra at high latitudes due to climate change

    Impact of the Nordic Arthroplasty Register Association (NARA) collaboration on demographics, methods and revision rates in knee arthroplasty: a register-based study from NARA 2000–2017

    Get PDF
    Background and purpose: We have previously observed differences in treatment and outcome of knee arthroplasties in the Nordic countries. To evaluate the impact of Nordic collaboration in the last 15 years we aimed to compare patient demographics, methods, and revision rates in primary knee arthroplasties among the 4 Nordic countries.Patients and methods: We included 535,051 primary knee arthroplasties reported 2000-2017 from the Nordic Arthroplasty Register Association (NARA) database. Kaplan-Meier analysis (KM) and restricted mean survival time (RMST) analysis were used to evaluate the cumulative revision rate (CRR) and RMST estimates with 95% confidence intervals (CI) and to compare countries in relation to risk of revision for any reason.Results: After 2010, the increase in incidence of knee arthroplasty plateaued in Sweden and Denmark but continued to increase in Finland and Norway. In 2017 the incidence was highest in Finland with 226 per 105 person-years, while it was less than 150 per 105 in the 3 other Nordic countries. In total knee arthroplasties performed for osteoarthritis (OA), overall CRR at 15 years for revision due to any reason was higher in Denmark (CRR 9.6%, 95% CI 9.2-10), Norway (CRR 9.1%, CI 8.7-9.5), and Finland (CRR 7.0%, CI 6.8-7.3) compared with Sweden (CRR 6.6%, CI 6.4-6.8). There were differences among the countries in use of implant brand and type, fixation, patellar component, and use of unicompartmental knee arthroplasty.Interpretation: We evinced a slowing growth of incidence of knee arthroplasties in the Nordic countries after 2010 with Finland having the highest incidence. We also noted substantial differences among the 4 Nordic countries, with Sweden having a lower risk of revision than the other countries. No impact of NARA could be demonstrated and CRR did not improve over time.</p

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    SOX3 promotes generation of committed spermatogonia in postnatal mouse testes

    No full text
    SOX3 is a transcription factor expressed within the developing and adult nervous system where it mostly functions to help maintain neural precursors. Sox3 is also expressed in other locations, notably within the spermatogonial stem/progenitor cell population in postnatal testis. Independent studies have shown that Sox3 null mice exhibit a spermatogenic block as young adults, the mechanism of which remains poorly understood. Using a panel of spermatogonial cell marker genes, we demonstrate that Sox3 is expressed within the committed progenitor fraction of the undifferentiated spermatogonial pool. Additionally, we use a Sox3 null mouse model to define a potential role for this factor in progenitor cell function. We demonstrate that Sox3 expression is required for transition of undifferentiated cells from a GFRα1+ self-renewing state to the NGN3 + transit-amplifying compartment. Critically, using chromatin immunoprecipitation, we demonstrate that SOX3 binds to a highly conserved region in the Ngn3 promoter region in vivo, indicating that Ngn3 is a direct target of SOX3. Together these studies indicate that SOX3 functions as a pro-commitment factor in spermatogonial stem/progenitor cells.Dale McAninch, Juho-Antti Mäkelä, Hue M. La, James N. Hughes, Robin Lovell-Badge, Robin M. Hobbs, Paul Q. Thoma

    Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    No full text
    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L.) growing in boreal forest in eastern Finland. Riparian and upland chronologies were compared to examine differences in the pine growth variability and growth response to climatic variation in the two habitats. It was found that the climatic variables showing statistically significant correlations with the tree-ring chronologies were related to snow conditions at the start of the growing season. Deeper snowpack led to reduced upland pine growth, possibly due to delayed snowmelt and thus postponed onset of the growing season. Warm late winters were followed by increased riparian pine growth because of earlier start of the snow-melt season and thus a lower maximum early summer lake level. Moreover, riparian pines reacted negatively to increased rainfall in June, whereas the upland pines showed a positive response. Latewood growth reacted significantly to summer temperatures. The BI chronology showed a strong correlation with warm-season temperatures, indicating an encouraging possibility of summer temperature reconstruction using middle/south boreal pine tree-ring archives. © 2013 The Ecological Society of Japan

    Identification of dynamic undifferentiated cell states within the male germline

    Get PDF
    The role of stem cells in tissue maintenance is appreciated and hierarchical models of stem cell self-renewal and differentiation often proposed. Stem cell activity in the male germline is restricted to undifferentiated A-type spermatogonia (Aundiff); however, only a fraction of this population act as stem cells in undisturbed testis and Aundiff hierarchy remains contentious. Through newly developed compound reporter mice, here we define molecular signatures of self-renewing and differentiation-primed adult Aundiff fractions and dissect Aundiff heterogeneity by single-cell analysis. We uncover an unappreciated population within the self-renewing Aundiff fraction marked by expression of embryonic patterning genes and homeodomain transcription factor PDX1. Importantly, we find that PDX1 marks a population with potent stem cell capacity unique to mature, homeostatic testis and demonstrate dynamic interconversion between PDX1+ and PDX1- Aundiff states upon transplant and culture. We conclude that Aundiff exist in a series of dynamic cell states with distinct function and provide evidence that stability of such states is dictated by niche-derived cues.Hue M. La, Juho-Antti Mäkelä, Ai-Leen Chan, Fernando J. Rossello, Christian M. Nefzger, Julien M. D. Legrand ... et al
    corecore