310 research outputs found

    Spaces of finite element differential forms

    Full text link
    We discuss the construction of finite element spaces of differential forms which satisfy the crucial assumptions of the finite element exterior calculus, namely that they can be assembled into subcomplexes of the de Rham complex which admit commuting projections. We present two families of spaces in the case of simplicial meshes, and two other families in the case of cubical meshes. We make use of the exterior calculus and the Koszul complex to define and understand the spaces. These tools allow us to treat a wide variety of situations, which are often treated separately, in a unified fashion.Comment: To appear in: Analysis and Numerics of Partial Differential Equations, U. Gianazza, F. Brezzi, P. Colli Franzone, and G. Gilardi, eds., Springer 2013. v2: a few minor typos corrected. v3: a few more typo correction

    Macrophages in homeostatic immune function

    Get PDF
    Macrophages are not only involved in inflammatory and anti-infective processes, but also play an important role in maintaining tissue homeostasis. In this review, we summarize recent evidence investigating the role of macrophages in controlling angiogenesis, metabolism as well as salt and water balance. Particularly, we summarize the importance of macrophage tonicity enhancer binding protein (TonEBP, also termed nuclear factor of activated T-cells 5 [NFAT5]) expression in the regulation of salt and water homeostasis. Further understanding of homeostatic macrophage function may lead to new therapeutic approaches to treat ischemia, hypertension and metabolic disorders

    Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey

    Get PDF
    Inland waters transport large amounts of dissolved organic matter (DOM) from terrestrial environments to the oceans, but DOM also reacts en route, with substantial water column losses by mineralization and sedimentation. For DOM transformations along the aquatic continuum, lakes play an important role as they retain waters in the landscape allowing for more time to alter DOM. We know DOM losses are significant at the global scale, yet little is known about how the reactivity of DOM varies across landscapes and climates. DOM reactivity is inherently linked to its chemical composition. We used fluorescence spectroscopy to explore DOM quality from 560 lakes distributed across Sweden and encompassed a wide climatic gradient typical of the boreal ecozone. Six fluorescence components were identified using parallel factor analysis (PARAFAC). The intensity and relative abundance of these components were analyzed in relation to lake chemistry, catchment, and climate characteristics. Land cover, particularly the percentage of water in the catchment, was a primary factor explaining variability in PARAFAC components. Likewise, lake water retention time influenced DOM quality. These results suggest that processes occurring in upstream water bodies, in addition to the lake itself, have a dominant influence on DOM quality. PARAFAC components with longer emission wavelengths, or red-shifted components, were most reactive. In contrast, protein-like components were most persistent within lakes. Generalized characteristics of PARAFAC components based on emission wavelength could ease future interpretation of fluorescence spectra. An important secondary influence on DOM quality was mean annual temperature, which ranged between −6.2 and +7.5 °C. These results suggest that DOM reactivity depends more heavily on the duration of time taken to pass through the landscape, rather than temperature. Projected increases in runoff in the boreal region may force lake DOM toward a higher overall amount and proportion of humic-like substances

    Sodium and its manifold impact on our immune system

    Get PDF
    The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings

    Elementary immunology: Na(+) as a regulator of immunity

    Get PDF
    The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases

    Effect of a probiotic on blood pressure in grade 1 hypertension (HYPRO): protocol of a randomized controlled study

    Get PDF
    BACKGROUND: Arterial hypertension is a major risk factor for cardiovascular disease and leads to target organ damage including stroke, heart failure, and kidney disease. About 1.5 billion people worldwide have hypertension, and it is estimated that it causes about 8 million deaths each year. Although there are several drugs available to lower blood pressure (BP), a great proportion of treated patients does not reach recommended treatment targets. Typical antihypertensive drugs target the vessels, the kidneys, and the heart. However, our gut microbiota also influences cardiovascular health, and gut dysbiosis is associated with hypertension. In this study protocol, we investigate the potential BP-lowering effect of a probiotic in patients with grade 1 hypertension. METHODS: This study is an exploratory, randomized, double-blind, placebo-controlled, parallel-group study. One hundred ten patients with grade 1 hypertension (treated or untreated) will be randomized to either the probiotic Vivomixx® or placebo. The primary endpoint is the nocturnal systolic BP measured by ambulatory blood pressure monitoring after 8 weeks adjusted for the baseline value. The secondary endpoints are changes from baseline in nocturnal diastolic BP, antihypertensive medication, fecal microbiome composition, fecal and serum metabolome, immune cell phenotypes, glucose variability after three standardized breakfasts, and health-related quality of life (PROMIS-29). We also assess the safety profile of the intervention. DISCUSSION: We postulate that various administrated bacteria (Lactobacilli, Bifidobacteria, and Streptococcus thermophilus) convert dietary components into active metabolites that positively affect immune cell function. A reduction of pro-inflammatory immune cell function could promote a BP-lowering effect. TRIAL REGISTRATION: ClinicalTrials.gov NCT03906578 . Registered on 08 April 2019

    eNOS-NO-induced small blood vessel relaxation requires EHD2-dependent caveolae stabilization

    Get PDF
    Endothelial nitric oxide synthase (eNOS)-related vessel relaxation is a highly coordinated process that regulates blood flow and pressure and is dependent on caveolae. Here, we investigated the role of caveolar plasma membrane stabilization by the dynamin-related ATPase EHD2 on eNOS-nitric oxide (NO)-dependent vessel relaxation. Loss of EHD2 in small arteries led to increased numbers of caveolae that were detached from the plasma membrane. Concomitantly, impaired relaxation of mesenteric arteries and reduced running wheel activity were observed in EHD2 knockout mice. EHD2 deletion or knockdown led to decreased production of nitric oxide (NO) although eNOS expression levels were not changed. Super-resolution imaging revealed that eNOS was redistributed from the plasma membrane to internalized detached caveolae in EHD2-lacking tissue or cells. Following an ATP stimulus, reduced cytosolic Ca(2+) peaks were recorded in human umbilical vein endothelial cells (HUVECs) lacking EHD2. Our data suggest that EHD2-controlled caveolar dynamics orchestrates the activity and regulation of eNOS/NO and Ca(2+) channel localization at the plasma membrane

    Accelerated Cosmological Models in First-Order Non-Linear Gravity

    Full text link
    The evidence of the acceleration of universe at present time has lead to investigate modified theories of gravity and alternative theories of gravity, which are able to explain acceleration from a theoretical viewpoint without the need of introducing dark energy. In this paper we study alternative gravitational theories defined by Lagrangians which depend on general functions of the Ricci scalar invariant in minimal interaction with matter, in view of their possible cosmological applications. Structural equations for the spacetimes described by such theories are solved and the corresponding field equations are investigated in the Palatini formalism, which prevents instability problems. Particular examples of these theories are also shown to provide, under suitable hypotheses, a coherent theoretical explanation of earlier results concerning the present acceleration of the universe and cosmological inflation. We suggest moreover a new possible Lagrangian, depending on the inverse of sinh(R), which gives an explanation to the present acceleration of the universe.Comment: 23 pages, Revtex4 fil

    Photoionization of ultracold and Bose-Einstein condensed Rb atoms

    Full text link
    Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.Comment: 9 pages, 7 figure

    Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion

    Get PDF
    Transient receptor potential vanilloid 4 (TRPV4) cation channels are functional in all renal vascular segments and mediate endothelium-dependent vasorelaxation. Moreover, they are expressed in distinct parts of the tubular system and activated by cell swelling. Ischaemia/reperfusion injury (IRI) is characterized by tubular injury and endothelial dysfunction. Therefore, we hypothesised a putative organ protective role of TRPV4 in acute renal IRI. IRI was induced in TRPV4 deficient (Trpv4 KO) and wild-type (WT) control mice by clipping the left renal pedicle after right-sided nephrectomy. Serum creatinine level was higher in Trpv4 KO mice 6 and 24 hours after ischaemia compared to WT mice. Detailed histological analysis revealed that IRI caused aggravated renal tubular damage in Trpv4 KO mice, especially in the renal cortex. Immunohistological and functional assessment confirmed TRPV4 expression in proximal tubular cells. Furthermore, the tubular damage could be attributed to enhanced necrosis rather than apoptosis. Surprisingly, the percentage of infiltrating granulocytes and macrophages were comparable in IRI-damaged kidneys of Trpv4 KO and WT mice. The present results suggest a renoprotective role of TRPV4 during acute renal IRI. Further studies using cell-specific TRPV4 deficient mice are needed to clarify cellular mechanisms of TRPV4 in IRI
    • …
    corecore