19 research outputs found

    Barley-ß-glucans reduce systemic inflammation, renal injury and aortic calcification through ADAM17 and neutral-sphingomyelinase2 inhibition

    Get PDF
    In chronic kidney disease (CKD), hyperphosphatemia-induced inflammation aggravates vascular calcification (VC) by increasing vascular smooth muscle cell (VSMC) osteogenic differentiation, ADAM17-induced renal and vascular injury, and TNFα-induction of neutral-sphingomyelinase2 (nSMase2) to release pro-calcifying exosomes. This study examined anti-inflammatory ÎČ-glucans efficacy at attenuating systemic inflammation in health, and renal and vascular injury favoring VC in hyperphosphatemic CKD. In healthy adults, dietary barley ÎČ-glucans (BÎČglucans) reduced leukocyte superoxide production, inflammatory ADAM17, TNFα, nSMase2, and pro-aging/pro-inflammatory STING (Stimulator of interferon genes) gene expression without decreasing circulating inflammatory cytokines, except for Îł-interferon. In hyperphosphatemic rat CKD, dietary BÎČglucans reduced renal and aortic ADAM17-driven inflammation attenuating CKD-progression (higher GFR and lower serum creatinine, proteinuria, kidney inflammatory infiltration and nSMase2), and TNFα-driven increases in aortic nSMase2 and calcium deposition without improving mineral homeostasis. In VSMC, BÎČglucans prevented LPS- or uremic serum-induced rapid increases in ADAM17, TNFα and nSMase2, and reduced the 13-fold higher calcium deposition induced by prolonged calcifying conditions by inhibiting osteogenic differentiation and increases in nSMase2 through Dectin1-independent actions involving BÎČglucans internalization. Thus, dietary BÎČglucans inhibit leukocyte superoxide production and leukocyte, renal and aortic ADAM17- and nSMase2 gene expression attenuating systemic inflammation in health, and renal injury and aortic calcification despite hyperphosphatemia in CKD.A grant to A.S.D. and M.J.M. from IRBLleida and Agrotecnio Research collaborative projects from the Consell Social at Lleida University supported initial work, Instituto de Salud Carlos III and co-funded by European Union (ERDF/FEDER) (FIS PI11/00259, PI14/01452, PI17/02181), Plan de Ciencia, TecnologĂ­a e InnovaciĂłn 2013–2017 y 2018–2022 del Principado de Asturias (GRUPIN14-028, IDI-2018-000152), RedInRen from ISCIII (ISCIII-RETIC REDINREN RD16/0009). Investigator support included: NC-L by GRUPIN14-028 and IDI-2018-000152, LM-A by GRUPIN14-028, SP by FICYT; MVA and PV by Educational Grant 2 A/2015 from ERA-EDTA CKD-MBD Working Group; PV and AC by ERA-EDTA fellowships 2011 and 2012; JR-C by MINECO (“Juan de la Cierva” program, FJCI-2015-23849); A.S.D. by AsociaciĂłn InvestigaciĂłn de FisiologĂ­a Aplicada. A.S.D. and M.J.M. are members of the Campus Iberus (Ebro Valley Campus of International Excellence)

    Metagenomic analysis of viruses, bacteria and protozoa in irrigation water

    Full text link
    [EN] Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.This work was supported through a grant funded by the Spanish Ministry of Economy and Competitiveness (MINECO) in the frame of the collaborative international consortium JPIW2013-095-C03-01, JPIW2013-095-C03-02 and JPIW2013-095-C03-03 of the Water Challenges for a Changing World Joint Programming Initiative (Water JPI) Pilot Call and partially by AGL2017-86797-C2-1-R. Silvia Bofill-Mas is a Serra-Hunter fellow at the University of Barcelona.Rusiñol, M.; Martinez-Puchol, S.; Timoneda, N.; Fernandez-Cassi, X.; Pérez-Cataluña, A.; Fernåndez-Bravo, A.; Moreno-Mesonero, L.... (2020). Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. International Journal of Hygiene and Environmental Health. 224. https://doi.org/10.1016/j.ijheh.2019.113440S22

    New Perspectives in Monitoring Drinking Water Microbial Quality

    No full text
    The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated

    Procesado del åcido polilåctico (PLA) y de nanocompuestos PLA/montmorillonita en planta piloto: estudio de sus cambios estructurales y de su estabilidad térmica

    No full text
    Se aplican procesos de transformación y tratamiento de termoplåsticos (inyección, extrusión-inyección y recocido) al àcido polilåctico (PLA) y a determinados nanocompuestos PLA/montmorillonita, con objeto de estudiar las variaciones de la estructura físico-química del PLA durante su procesado en planta piloto. El grado de cristalinidad de los materiales se estudió mediante calorimetría de barrido diferencial (DSC), difracción de rayos X (XRD) y espectroscopía FTIR, constatåndoses que el procesado mecånico provoca la pràctica desaparición de la estructura cristalina del PLA, que se recupera mediante el recocido. Ademås, la técnica FTIR ha permitido el estudio de interacciones químicas entre los componentes de los nanocompuestos. Por otro lado, se ha estudiado la estabilidad térmica de muestras de PLA y de sus nanocompuestos, a partir de temperaturas de descomposición características, que se obtienen de los termogramas TGA.Peer ReviewedPostprint (published version

    The hardness behaviour of wear resistant coatings

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:9091.9(AERE-R--12232) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Kinetics of the thermal decomposition of processed poly(lactic acid)

    No full text
    The kinetics of the thermal decomposition of processed poly(lactic acid) has been studied and compared to that of raw material. Processing consisted of two different industrial processes: 1) Injection (with or without further annealing); 2) Extrusion followed by injection (with or without further annealing). For this study, an integral method (based on the general analytical solution), differential methods (based on the first conversion derivative and on the 2nd derivative) and special methods have been used. On the other hand, a method based on the maximum decomposition rate has been considered. By doing that, the kinetic parameters (reaction order, frequency factor and activation energy) have been determined. It has been demonstrated that there was only one first-order reaction for the entire conversion range. A new equation (based on the second conversion derivative plot as a function of temperature) was developed allowing the calculation of the reaction order. This method quantifies peak areas (and not peak heights, as reported by Kissinger). It is very useful because it considers both peak shape and width. Activation energy, as determined by using the general analytical solution, was 318 kJ/mol for unprocessed poly(lactic acid) whereas it was 280 ± 5 kJ/mol for processed materials. All the processed materials had approximately the same thermal stability (T5 = 333.0–335.8 °C, at 95% confidence level), which was slightly lower than that of unprocessed materials (T5 = 337.5 °C). PLA melting (during extrusion and injection) was responsible for depolymerization reactions (the small molecules formed during melting processes can volatilize readily).Peer ReviewedPostprint (published version

    Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties

    No full text
    The processing of poly(lactic acid) (injection and extrusion/injection) as well as annealing of processed materials were studied in order to analyze the variation of its chemical structure, thermal degradation and mechanical properties. Processing of PLA was responsible for a decrease in molecular weight, as determined by GPC, due to chain scission. The degree of crystallinity was evaluated by means of differential scanning calorimetry and X-ray diffraction. It was found that mechanical processing led to the quasi disappearance of crystal structure whereas it was recovered after annealing. These findings were qualitatively corroborated by means of FTIR. By analyzing 1H NMR and 13C NMR chemical shifts and peak areas, it was possible to affirm that the chemical composition of PLA did not change after processing, but the proportion of methyl groups increased, thus indicating the presence of a different molecular environment. The thermal stability of the various materials was established by calculating various characteristic temperatures from thermograms as well as conversion and conversion derivative curves. Finally, the mechanical behaviour was determined by means of tensile testing (Young modulus, yield strength and elongation at break).Peer Reviewe

    Kinetics of the thermal decomposition of processed poly(lactic acid)

    No full text
    The kinetics of the thermal decomposition of processed poly(lactic acid) has been studied and compared to that of raw material. Processing consisted of two different industrial processes: 1) Injection (with or without further annealing); 2) Extrusion followed by injection (with or without further annealing). For this study, an integral method (based on the general analytical solution), differential methods (based on the first conversion derivative and on the 2nd derivative) and special methods have been used. On the other hand, a method based on the maximum decomposition rate has been considered. By doing that, the kinetic parameters (reaction order, frequency factor and activation energy) have been determined. It has been demonstrated that there was only one first-order reaction for the entire conversion range. A new equation (based on the second conversion derivative plot as a function of temperature) was developed allowing the calculation of the reaction order. This method quantifies peak areas (and not peak heights, as reported by Kissinger). It is very useful because it considers both peak shape and width. Activation energy, as determined by using the general analytical solution, was 318 kJ/mol for unprocessed poly(lactic acid) whereas it was 280 ± 5 kJ/mol for processed materials. All the processed materials had approximately the same thermal stability (T5 = 333.0–335.8 °C, at 95% confidence level), which was slightly lower than that of unprocessed materials (T5 = 337.5 °C). PLA melting (during extrusion and injection) was responsible for depolymerization reactions (the small molecules formed during melting processes can volatilize readily).Peer Reviewe
    corecore