2,571 research outputs found

    Stochastic solutions of Stefan problems

    Full text link
    This work deals with the one-dimensional Stefan problem with a general time-dependent boundary condition at the fixed boundary. Stochastic solutions are obtained using discrete random walks, and the results are compared with analytic formulae when they exist, otherwise with numerical solutions from a finite difference method. The innovative part is to model the moving boundary with a random walk method. The results show statistical convergence for many random walkers when Δx→0\Delta x \rightarrow 0. Stochastic methods are very competitive in large domains in higher dimensions and has the advantages of generality and ease of implementation. The stochastic method suffers from that longer execution times are required for increased accuracy. Since the code is easily adapted for parallel computing, it is possible to speed up the calculations. Regarding applications for Stefan problems, they have historically been used to model the dynamics of melting ice, and we give such an example here where the fixed boundary condition follows data from observed day temperatures at \"{O}rebro airport. Nowadays, there are a large range of examples of applications, such as climate models, the diffusion of lithium-ions in lithium-ion batteries and modelling steam chambers for petroleum extraction.Comment: Submitted as Proceedings to Stochastic Processes and Algebraic Structures (SPAS) 201

    Functional Imaging of Autonomic Regulation: Methods and Key Findings.

    Get PDF
    Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function

    Perturbative Semiclassical Trace Formulae for Harmonic Oscillators

    Full text link
    In this article we extend previous semiclassical studies by including more general perturbative potentials of the harmonic oscillator in arbitrary spatial dimensions. Our starting point is a radial harmonic potential with an arbitrary even monomial perturbation, which we use to study the resulting U(D)\mathrm{U}(D) to O(D)\mathrm{O}(D) symmetry breaking. We derive the gross structure of the semiclassical spectrum from periodic orbit theory, in the form of a perturbative (ℏ→0\hbar \rightarrow 0) trace formula. We then show how to apply the results to even order polynomial potentials, possibly including mean-field terms. We have drawn the conclusion that the gross structure of the quantum spectrum is determined from only classical circular- and diameter-orbits for this class of systems.Comment: Added a comparison with Einstein-Brillouin-Keller theory. To appear in Reports on Mathematical Physic

    Correlated quantum dynamics of graphene

    Full text link
    Phase-space representations are a family of methods for dynamics of both bosonic and fermionic systems, that work by mapping the system's density matrix to a quasi-probability density and the Liouville-von Neumann equation of the Hamiltonian to a corresponding density differential equation for the probability. We investigate here the accuracy and the computational efficiency of one approximate phase-space representation, called the fermionic Truncated Wigner Approximation (fTWA), applied to the Fermi-Hubbard model. On a many-body 2D system, with hopping strength and Coulomb UU tuned to represent the electronic structure of graphene, the method is found to be able to capture the time evolution of first-order (site occupation) and second-order (correlation functions) moments significantly better than the mean-field, Hartree-Fock method. The fTWA was also compared to results from the exact diagonalization method for smaller systems, and in general the agreement was found to be good. The fully parallel computational requirement of fTWA scales in the same order as the Hartree-Fock method, and the largest system considered here contained 198 lattice sites

    Quantum Chaos and Regularity in Ultracold Fermi Gases

    Full text link
    Quantum fluctuation of the energy is studied for an ultracold gas of interacting fermions trapped in a three-dimensional potential. Periodic-orbit theory is explored, and energy fluctuations are studied versus particle number for generic regular and chaotic systems, as well for a system defined by a harmonic confinement potential. Temperature effects on the energy fluctuations are investigated.Comment: 4 pages, 5 figure
    • 

    corecore