11 research outputs found

    Dietary supplementation with yeast hydrolysate in pregnancy influences colostrum yield and gut microbiota of sows and piglets after birth

    Get PDF
    Dietary supplementation with yeast derivatives (YD) contributes to the health and physiology of sows and piglets, but few studies have focused on how it influences gut health and performance of sows and piglets. The goal was therefore to examine whether YD, based on brewer's yeast hydrolysate added to pregnancy diet, would affect colostrum composition, yield (CY) and gut microbiota of sows and piglets. Sows were allocated to either a control diet (n = 19) or a control diet supplemented with 2g YD/kg (n = 18) during the pregnancy. Piglets suckling belonging to the control sows (n = 114) and supplemented sows (n = 108) were also included in the study. Gut microbiota populations of sows at farrowing and piglets at one and four weeks of age were assessed using 16S rRNA gene sequencing. Colostrum samples were examined for nutritional composition and immunoglobulin (Ig) content. All piglets were individually weighed at birth and 24 hours later in order to calculate CY, and later at four weeks to calculate average daily gain (ADG). Protein, lactose and dry matter content of colostrum did not significantly differ between the two groups, while sows fed YD had higher levels of fat in their colostrum (P0.05). Colostrum yield was lower in the control than that in YD group (3701g vs. 4581 g; PPeer reviewe

    Phenotypic effects of dietary stress in combination with a respiratory chain bypass in mice

    Get PDF
    The alternative oxidase (AOX) from Ciona intestinalis was previously shown to be expressible in mice and to cause no physiological disturbance under unstressed conditions. Because AOX is known to become activated under some metabolic stress conditions, resulting in altered energy balance, we studied its effects in mice subjected to dietary stress. Wild-type mice (Mus musculus, strain C57BL/6JOlaHsd) fed a high-fat or ketogenic (high-fat, low-carbohydrate) diet show weight gain with increased fat mass, as well as loss of performance, compared with chow-fed animals. Unexpectedly, AOX-expressing mice fed on these metabolically stressful, fat-rich diets showed almost indistinguishable patterns of weight gain and altered body composition as control animals. Cardiac performance was impaired to a similar extent by ketogenic diet in AOX mice as in nontransgenic littermates. AOX and control animals fed on ketogenic diet both showed wide variance in weight gain. Analysis of the gut microbiome in stool revealed a strong correlation with diet, rather than with genotype. The microbiome of the most and least obese outliers reared on the ketogenic diet showed no consistent trends compared with animals of normal body weight. We conclude that AOX expression in mice does not modify physiological responses to extreme diets.Peer reviewe

    Heatmap showing correlation (based on Pearson’s test) between the normalized square root transformed abundance of microbiota family and the performance parameters of sows.

    No full text
    <p>Positive or negative correlations are represented by shades of <i>red or blue</i> respectively. Dendrograms represent different clustering among the different performance parameters and the microbiota families.</p

    Bracketing phenogenotypic limits of mammalian hybridization

    Get PDF
    An increasing number of mammalian species have been shown to have a history of hybridization and introgression based on genetic analyses. Only relatively few fossils, however, preserve genetic material, and morphology must be used to identify the species and determine whether morphologically intermediate fossils could represent hybrids. Because dental and cranial fossils are typically the key body parts studied in mammalian palaeontology, here we bracket the potential for phenotypically extreme hybridizations by examining uniquely preserved cranio-dental material of a captive hybrid between grey and ringed seals. We analysed how distinct these species are genetically and morphologically, how easy it is to identify the hybrids using morphology and whether comparable hybridizations happen in the wild. We show that the genetic distance between these species is more than twice the modern human–Neanderthal distance, but still within that of morphologically similar species pairs known to hybridize. By contrast, morphological and developmental analyses show grey and ringed seals to be highly disparate, and that the hybrid is a predictable intermediate. Genetic analyses of the parent populations reveal introgression in the wild, suggesting that grey–ringed seal hybridization is not limited to captivity. Taken together, we postulate that there is considerable potential for mammalian hybridization between phenotypically disparate taxa.Peer reviewe

    Bray-Curtis OUT’s level principal component analysis (PCA).

    No full text
    <p>(A) Individual fecal samples of sow, piglets at one week and four weeks of age. (B) Individual sow fecal samples in the control group and YD group. (C) Individual sow fecal samples based on the sow colostrum yield, high (≥ 3500 g) and low (< 3500 g).</p

    Microbiota profiles showing normalized square root transformed abundances of the genera in piglets at one week of age.

    No full text
    <p>(A) Diet: piglets raised with sow fed YD diet and CON diet. (B) Weight 4W: genera abundances at one week based on piglet weight at four weeks, large (>7500 g) normal (5000–7500 g) small (<5000 g). (C) ADG: genera abundances at one week based on ADG, above average (<270 g) average (180–270 g) poor (<180 g). Genera are colored according to their phyla. <i>Firmicutes</i> (blue), <i>Bacteroides</i> (orange), and <i>Proteobacteria</i> (green). *<i>P</i><0.05, **<i>P</i><0.01.</p
    corecore