64 research outputs found
Optimization of structural solutions of reinforcement cages of bendable reinforced concrete elements
This article discusses the comparison of the design solutions of welded and knitted reinforcement cages used for reinforcement of concrete structures and evaluated their advantages and disadvantage
Optimization of structural solutions of reinforcement cages of bendable reinforced concrete elements
This article discusses the comparison of the design solutions of welded and knitted reinforcement cages used for reinforcement of concrete structures and evaluated their advantages and disadvantage
A Study of the Residual 39Ar Content in Argon from Underground Sources
The discovery of argon from underground sources with significantly less 39Ar
than atmospheric argon was an important step in the development of
direct-detection dark matter experiments using argon as the active target. We
report on the design and operation of a low background detector with a single
phase liquid argon target that was built to study the 39Ar content of the
underground argon. Underground argon from the Kinder Morgan CO2 plant in
Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in
atmospheric argon.Comment: 21 pages, 10 figure
Π§ΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΊ Π³Π»ΡΠΊΠΎΠΊΠΎΡΡΠΈΠΊΠΎΡΡΠ΅ΡΠΎΠΈΠ΄Π°ΠΌ ΠΈ Π³Π΅ΡΠ΅ΡΠΎΠ³Π΅Π½Π½ΠΎΡΡΡ ΠΎΡΠ²Π΅ΡΠ° ΠΊΠ»Π΅ΡΠΎΠΊ in vitro Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Ρ ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΡΡΡΠΊΡΠΈΠ²Π½ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ Π»Π΅Π³ΠΊΠΈΡ
Inhaled corticosteroids are widely used for the treatment of chronic obstructive pulmonary disease (COPD), but their efficacy significantly varies between patients. The aim of the study was to establish approaches to reveal steroid-sensitive and steroid-resistant patients with COPD using the blood and lung cells. Methods. Forty five patients with COPD undergoing bronchoscopy were recruited for the study of cytokine secretion by alveolar macrophages under the influence of glucocorticoids. Alveolar macrophages isolated from bronchoalveolar lavage fluid were cultured with lipopolysaccharide (LPS) and different concentrations of dexamethasone (0.01 β 1000 nM) for 24 h. Then, supernatants were removed and analyzed for concentrations of interleukin 6 (IL-6), IL-8 and tumor necrosis factor Ξ± (TNF-Ξ±). Binding of the glucocorticoid with its receptors was investigated in 24 patients with COPD, 20 healthy smokers and 20 healthy non-smokers. Blood cells were cultured with fluorescein isothiocyanate (FITC)-labelled dexamethasone and monoclonal antibodies against surface antigens of lymphocyte and monocyte populations. Fluorescence intensity of FITC-labelled dexamethasone was analyzed in blood cells using flow cytometry. Results. Dexamethasone significantly inhibited IL-6, IL-8, and TNF-Ξ± production in alveolar macrophages in a dose dependent manner. The maximal inhibition of cytokine production was observed at dexamethasone concentration of 100 nM, and the maximal cell response variability was found at 10 nM. IL-8 was less sensitive to the corticosteroid compared to IL-6 and TNF-Ξ±. Dexamethasone at any concentration failed to reach >50% inhibition of LPS-induced production of IL-8, IL-6 and TNF-Ξ± in alveolar macrophages of 40.0%; 11.1% and 8.9% of COPD patients, respectively. The fluorescence intensity of FITC-labelled dexamethasone in blood lymphocytes and monocytes was lower in smokers with COPD compared to healthy smokers and healthy non-smokers. The binding of dexamethasone with its receptors in the blood cells was higher in healthy non-smokers compared to healthy smokers. Conclusion. In vitro response of alveolar macrophages to glucocorticoids in COPD patients is characterized by significant inter-individual variability. The weak corticosteroid-related inhibition of IL-8 production can contribute to neutrophilic inflammation in COPD. The capacity of glucocorticoid receptors to bind with their ligands in blood lymphocytes and monocytes is decreased in COPD patients.ΠΠ½Π³Π°Π»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ Π³Π»ΡΠΊΠΎΠΊΠΎΡΡΠΈΠΊΠΎΡΡΠ΅ΡΠΎΠΈΠ΄Ρ (ΠΈΠΠΠ‘) ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΡΡΡΠΊΡΠΈΠ²Π½ΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ Π»Π΅Π³ΠΊΠΈΡ
(Π₯ΠΠΠ), ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΈΡ
ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π·Π»ΠΈΡΠ°Π΅ΡΡΡ. Π¦Π΅Π»ΡΡ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ»ΠΎΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΊ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π₯ΠΠΠ, ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΈ Π½Π΅ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΊ ΠΠΠ‘, ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ Π»Π΅Π³ΠΊΠΈΡ
ΠΈ ΠΊΡΠΎΠ²ΠΈ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΈΡΠΎΠΊΠΈΠ½-ΡΠ΅ΠΊΡΠ΅ΡΠΈΡΡΡΡΠ΅ΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π°Π»ΡΠ²Π΅ΠΎΠ»ΡΡΠ½ΡΡ
ΠΌΠ°ΠΊΡΠΎΡΠ°Π³ΠΎΠ² (ΠΠ) ΠΏΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΠΠΠ‘ ΠΏΡΠΈΠ½ΡΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠ΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ (n = 45), ΠΊΠΎΡΠΎΡΡΠΌ Π²ΡΠΏΠΎΠ»Π½ΡΠ»Π°ΡΡ Π±ΡΠΎΠ½Ρ
ΠΎΡΠΊΠΎΠΏΠΈΡ. ΠΠ, Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΈΠ· Π±ΡΠΎΠ½Ρ
ΠΎΠ°Π»ΡΠ²Π΅ΠΎΠ»ΡΡΠ½ΠΎΠΉ Π»Π°Π²Π°ΠΆΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ, ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Ρ Π»ΠΈΠΏΠΎΠΏΠΎΠ»ΠΈΡΠ°Ρ
Π°ΡΠΈΠ΄ΠΎΠΌ ΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΠΌΠΈ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½Π° (0,01β1Β 000 Π½Π). ΠΠΎ ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΠΈ 1 ΡΡΡΠΎΠΊ ΡΠΎΠ±ΠΈΡΠ°Π»ΠΈΡΡ ΡΡΠΏΠ΅ΡΠ½Π°ΡΠ°Π½ΡΡ, Π² Π½ΠΈΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»Π°ΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ»Π΅ΠΉΠΊΠΈΠ½Π° (IL)-6, IL-8 ΠΈ ΡΠ°ΠΊΡΠΎΡΠ° Π½Π΅ΠΊΡΠΎΠ·Π° ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ-Ξ± (TNF-Ξ±). ΠΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΠΠ‘ ΠΈ ΠΈΡ
ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Ρ Π₯ΠΠΠ (n = 24), Π·Π΄ΠΎΡΠΎΠ²ΡΠ΅ ΠΊΡΡΠΈΠ»ΡΡΠΈΠΊΠΈ (n = 20) ΠΈ Π·Π΄ΠΎΡΠΎΠ²ΡΠ΅ Π½Π΅ΠΊΡΡΡΡΠΈΠ΅ (n = 20). ΠΠ»Π΅ΡΠΊΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Ρ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½ΠΎΠΌ, ΠΌΠ΅ΡΠ΅Π½Π½ΡΠΌ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅ΠΈΠ½ΠΈΠ·ΠΎΡΠΈΠΎΡΠΈΠ°Π½Π°ΡΠΎΠΌ (FITC) ΠΈ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ ΠΊ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΠΌ Π°Π½ΡΠΈΠ³Π΅Π½Π°ΠΌ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² ΠΈ ΠΌΠΎΠ½ΠΎΡΠΈΡΠΎΠ². ΠΠ½Π°Π»ΠΈΠ· ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ FITC-ΠΌΠ΅ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½Π° Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½Π° Π΄ΠΎΠ·ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΠΎ ΡΠ½ΠΈΠΆΠ°Π»Π°ΡΡ ΡΠ΅ΠΊΡΠ΅ΡΠΈΡ IL-6, IL-8 ΠΈ TNF-Ξ± ΠΠ. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² ΠΠ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½Π° 100 Π½Π, Π° Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ°Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΎΡΠ²Π΅ΡΠ° ΠΊΠ»Π΅ΡΠΎΠΊ β ΠΏΡΠΈ 10 Π½Π. IL-8 Π±ΡΠ» ΠΌΠ΅Π½Π΅Π΅ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»Π΅Π½ ΠΊ ΠΈΠΠΠ‘, ΡΠ΅ΠΌ IL-6 ΠΈ TNF-Ξ±. ΠΡΠΈ Π»ΡΠ±ΠΎΠΉ ΠΈΠ· ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½ Π½Π΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π» Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Π½Π° 50 % ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡ IL-8 Π² ΠΠ Ρ 40 % ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π₯ΠΠΠ, IL-6 β Ρ 11,1 %, TNF-Ξ± β Ρ 8,9 %. Π£ ΠΊΡΡΡΡΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π₯ΠΠΠ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ FITC-ΠΌΠ΅ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½Π° Π² ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡΡ
Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² ΠΈ ΠΌΠΎΠ½ΠΎΡΠΈΡΠ°Ρ
ΠΊΡΠΎΠ²ΠΈ ΠΎΠΊΠ°Π·Π°Π»Π°ΡΡ Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ Ρ ΠΊΡΡΡΡΠΈΡ
ΠΈ Π½Π΅ΠΊΡΡΡΡΠΈΡ
Π·Π΄ΠΎΡΠΎΠ²ΡΡ
. Π‘Π²ΡΠ·ΡΠ²Π°Π½ΠΈΠ΅ Π΄Π΅ΠΊΡΠ°ΠΌΠ΅ΡΠ°Π·ΠΎΠ½Π° ΡΠΎ ΡΠ²ΠΎΠΈΠΌΠΈ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ°ΠΌΠΈ Π² ΠΊΠ»Π΅ΡΠΊΠ°Ρ
ΠΊΡΠΎΠ²ΠΈ Π±ΡΠ»ΠΎ Π²ΡΡΠ΅ Ρ Π½Π΅ΠΊΡΡΡΡΠΈΡ
Π·Π΄ΠΎΡΠΎΠ²ΡΡ
, ΡΠ΅ΠΌ Ρ Π·Π΄ΠΎΡΠΎΠ²ΡΡ
ΠΊΡΡΠΈΠ»ΡΡΠΈΠΊΠΎΠ². ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. Π₯ΠΠΠ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠΉ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡΡ in vitro ΠΎΡΠ²Π΅ΡΠ° ΠΠ Π½Π° ΠΠΠ‘. ΠΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠ½ΡΠ΅Π·Π° IL-8 ΠΠΠ‘ ΠΌΠΎΠΆΠ΅Ρ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π½Π΅ΠΉΡΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ Π₯ΠΠΠ. ΠΠ»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π₯ΠΠΠ ΡΠ²ΠΎΠΉΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΠΠ‘-ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΡΡ ΡΠΎ ΡΠ²ΠΎΠΈΠΌΠΈ Π»ΠΈΠ³Π°Π½Π΄Π°ΠΌΠΈ Π² Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
ΠΈ ΠΌΠΎΠ½ΠΎΡΠΈΡΠ°Ρ
ΠΊΡΠΎΠ²ΠΈ
ΠΠ΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΡΠ΄Π΅Π±Π½ΠΎ-ΡΠΊΡΠΏΠ΅ΡΡΠ½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Β«ΠΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΠΊΡΡΠΈΠ»ΡΠ½ΡΡ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½Β»
Β The results of validation of the method βMicroscopic analysis of textile fibersβ used in forensic fiber examination are presented. An attempt is made to estimate reliability of testing of this method numerically by the proportions of right and false results and credibility ratio.The testing method under consideration consists in establishing a set of external characteristics of natural and chemical textile fibers: color, peculiarities of coloration, morphological features, presence/absence of a matting agent. These generic characteristics are used in forensic textile analysis.Β As the objects of testing fiber samples from comparative collection of a forensic fiber laboratory were used. Four experts participated in the experiment independently examining eleven fiber samples by eleven external characteristics for a week.A low (2,2 %) rate of false results in relation to the total number of tests was established as well as the low (less than 3,0 %) rate of each expertβs false results. The probability of the right results of characteristicsβ assessment is 30 times higher than the probability of false results.The results of the experiment permit the conclusion that the method is suitable to be used in forensic fiber examination when dealing with various tasks: classification, identification, situational and diagnostic.Β Β ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Β«ΠΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΠΊΡΡΠΈΠ»ΡΠ½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½Β», ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΠΎΠΉ ΠΏΡΠΈ ΡΡΠ΄Π΅Π±Π½ΠΎ-ΡΠΊΡΠΏΠ΅ΡΡΠ½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². ΠΡΠ΅Π΄ΠΏΡΠΈΠ½ΡΡΠ° ΠΏΠΎΠΏΡΡΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ: ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π΄ΠΎΠ»Π΅ΠΉ Π»ΠΎΠΆΠ½ΡΡ
ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠ°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ.Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠ°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° Π²Π½Π΅ΡΠ½ΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΊΡΡΠΈΠ»ΡΠ½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½: ΡΠ²Π΅ΡΠ°, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΎΠΊΡΠ°ΡΠΊΠΈ, ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ, Π½Π°Π»ΠΈΡΠΈΡ/ΠΎΡΡΡΡΡΡΠ²ΠΈΡ ΠΌΠ°ΡΠΈΡΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ°. ΠΠ°Π½Π½ΡΠ΅ ΡΠΎΠ΄ΠΎΠ²ΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΈ ΡΡΠ΄Π΅Π±Π½ΠΎ-ΡΠΊΡΠΏΠ΅ΡΡΠ½ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΊΡΡΠΈΠ»ΡΠ½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½.ΠΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ»ΠΈΡΡ ΠΎΠ±ΡΠ°Π·ΡΡ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΈΠ· ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΊΡΠΈΠΌΠΈΠ½Π°Π»ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Ρ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². Π ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅ ΡΡΠ°ΡΡΠ²ΠΎΠ²Π°Π»ΠΈ ΡΠ΅ΡΡΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅Π΄Π΅Π»ΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΠΎΠ΄ΠΈΠ½Π½Π°Π΄ΡΠ°ΡΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΏΠΎ ΠΎΠ΄ΠΈΠ½Π½Π°Π΄ΡΠ°ΡΠΈ Π²Π½Π΅ΡΠ½ΠΈΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌ.Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ Π½ΠΈΠ·ΠΊΠΈΠΉ (2,2 %) ΡΡΠΎΠ²Π΅Π½Ρ Π»ΠΎΠΆΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΈΡΠ»Ρ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½ΠΈΠ·ΠΊΠΈΠΉ (ΠΌΠ΅Π½Π΅Π΅ 3,0 %) ΡΡΠΎΠ²Π΅Π½Ρ Π»ΠΎΠΆΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΡΠΊΡΠΏΠ΅ΡΡΠΎΠ². ΠΠ΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π² 30 ΡΠ°Π· Π²ΡΡΠ΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ Π»ΠΎΠΆΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ².Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠΈΠ³ΠΎΠ΄Π½Π° Π΄Π»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΡΠ΄Π΅Π±Π½ΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Π΅ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ
Π·Π°Π΄Π°Ρ: ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
, ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
, ΡΠΈΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎ-Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
.
Dnmt3a is an epigenetic mediator of adipose insulin resistance
Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human adipose tissue. Taken together, our data demonstrate that adipose Dnmt3a is a novel epigenetic mediator of insulin resistance in vitro and in vivo
ΠΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΡΡΠ΄Π΅Π±Π½ΠΎ-ΡΠΊΡΠΏΠ΅ΡΡΠ½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ
The article reviews and summarizes the experience of validating forensic expert techniques in the Russian Federal Centre of Forensic Science of the Ministry of Justice of the Russian Federation. The authors point out the methodological features of practical implementation of the validation procedure. They demonstrate that the specificity, diversity, and complexity of the objects of expert study require the classification of the applied methods in terms of metrology, identification of the main validation parameters of quantitative and qualitative methods, organization of experiments, and evaluation of validation parameters using mathematical analysis methods. They also propose to divide methods into two types: forensic expert measurement methods (FMT) and forensic expert testing methods (FTT). Based on the generalization of information presented in several regulatory documents and scientific publications, the following parameters are identified for FMT: metrological characteristics or properties of the method (specificity, linearity, sensitivity, range of determined values, detection limit, quantitative determination limit) and quality indicators of the method (precision, correctness, accuracy of the analysis result, or uncertainty). When validating FTT, it is proposed to evaluate the reliability of the method and the competence of the expert.An experiment to assess validation parameters is performed using enough control samples with established characteristics of controlled indicators and with the participation of a sufficient number of experts. Requirements for control samples are provided.The authors also give examples of probabilistic evaluation of validation parameters for two qualitative testing methods: microscopic examination of textile fibers and detection of gunshot residue using scanning electron microscopy and X-ray microanalysis. The reliability of these methods is assessed by calculating the likelihood ratio, and the specificity of interpreting the results of FMT and FTT validation is noted.The decision on compliance with the requirements is made if the interval of the established extended uncertainty for the obtained result does not exceed the tolerance field. In the absence of tolerances, FMT is considered suitable for solving forensic expert tasks if the values of the extended uncertainty of the measurement results of the controlled indicator do not exceed the values established during validation. For FTT, a low probabilistic proportion of false positive and false negative results in determining the presence/absence of controlled indicators, as well as experimentally confirmed competence of the expert during validation, are indicators of the suitability of the method for its intended useΠ ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΎΠ±Π·ΠΎΡ ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΡΠ° Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΡΡΠ΄Π΅Π±Π½ΠΎ-ΡΠΊΡΠΏΠ΅ΡΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ (Π‘ΠΠ) Π² Π€ΠΠ£ Π Π€Π¦Π‘Π ΠΏΡΠΈ ΠΠΈΠ½ΡΡΡΠ΅ Π ΠΎΡΡΠΈΠΈ. ΠΡΠΌΠ΅ΡΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ, ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ ΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΡΠΊΡΠΏΠ΅ΡΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ΅Π±ΡΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ Π² ΠΌΠ΅ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΠ»Π°Π½Π΅, Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ, ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π°. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΠ°Π·Π΄Π΅Π»ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π½Π° Π΄Π²Π° ΡΠΈΠΏΠ°: ΡΡΠ΄Π΅Π±Π½ΠΎΡΠΊΡΠΏΠ΅ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ (Π‘ΠΠΠ) ΠΈ ΡΡΠ΄Π΅Π±Π½ΠΎ-ΡΠΊΡΠΏΠ΅ΡΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ (Π‘ΠΠΠ’). ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ ΡΠ²Π΅Π΄Π΅Π½ΠΈΠΉ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ
Π² ΡΡΠ΄Π΅ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΡ
Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠΎΠ² ΠΈ Π½Π°ΡΡΠ½ΡΡ
ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΉ, Π΄Π»Ρ Π‘ΠΠΠ Π²ΡΠ΄Π΅Π»Π΅Π½Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ: ΠΌΠ΅ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΈΠ»ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ (ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ, Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΡ, ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΡ
Π²Π΅Π»ΠΈΡΠΈΠ½, ΠΏΡΠ΅Π΄Π΅Π» ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ, ΠΏΡΠ΅Π΄Π΅Π» ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ) ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ (ΠΏΡΠ΅ΡΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΡΡΡ, ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ, ΡΠΎΡΠ½ΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΈΠ»ΠΈ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΡ). ΠΡΠΈ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ Π‘ΠΠΠ’ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΎΡΠ΅Π½ΠΈΠ²Π°ΡΡ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΈ ΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΡ ΡΠΊΡΠΏΠ΅ΡΡΠ°.ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½Ρ ΠΏΠΎ ΠΎΡΠ΅Π½ΠΊΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Ρ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ Ρ ΡΡΠ°ΡΡΠΈΠ΅ΠΌ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΡΠΊΡΠΏΠ΅ΡΡΠΎΠ². ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠ΅Π΄ΡΡΠ²Π»ΡΠ΅ΠΌΡΠ΅ ΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΡΠ°ΠΌ.Π Π°Π·ΠΎΠ±ΡΠ°Π½Ρ ΠΏΡΠΈΠΌΠ΅ΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ Π΄Π»Ρ Π΄Π²ΡΡ
ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ: ΠΏΠΎ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΊΡΡΠΈΠ»ΡΠ½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΈ ΠΏΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΠΎΠ² ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π²ΡΡΡΡΠ΅Π»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΠ°Π½Π°Π»ΠΈΠ·Π°. ΠΠ°Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ ΡΡΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ° ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠ°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ, ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠ° ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ Π‘ΠΠΠ ΠΈ Π‘ΠΠΠ’.Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Π‘ΠΠΠ ΠΏΡΠ΅Π΄ΡΡΠ²Π»Π΅Π½Π½ΡΠΌ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΡΡΡ, Π΅ΡΠ»ΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠΉ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° Π½Π΅ Π²ΡΡ
ΠΎΠ΄ΠΈΡ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Ρ ΠΏΠΎΠ»Ρ Π΄ΠΎΠΏΡΡΠΊΠ°. ΠΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠΈ Π΄ΠΎΠΏΡΡΠΊΠΎΠ² Π‘ΠΠΠ ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎΠΉ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΄Π΅Π±Π½ΠΎΡΠΊΡΠΏΠ΅ΡΡΠ½ΡΡ
Π·Π°Π΄Π°Ρ, Π΅ΡΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΠ΅Π½Π½ΠΎΠΉ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ, ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΡ
ΠΏΡΠΈ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ. ΠΠ»Ρ Π‘ΠΠΠ’ Π½ΠΈΠ·ΠΊΠ°Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½Π°Ρ Π΄ΠΎΠ»Ρ Π»ΠΎΠΆΠ½ΠΎΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΈ Π»ΠΎΠΆΠ½ΠΎΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ Π½Π°Π»ΠΈΡΠΈΡ/ΠΎΡΡΡΡΡΡΠ²ΠΈΡ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π½Π°Ρ ΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΡ ΡΠΊΡΠΏΠ΅ΡΡΠ° Π² Ρ
ΠΎΠ΄Π΅ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π΄Π»Ρ ΡΠ΅Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈ
ΠΠ°Π»ΠΈΠ΄Π°ΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ° ΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΡΡ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π½Π° ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ΅-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠ΅ ΠΠ‘Π€Π£-Π
This work is part of a series of efforts towards validation of methods used in forensic fiber analysis. These efforts address current needs for accreditation of forensic laboratories and quality control in operations.The qualitative testing methodology consists of obtaining absorption spectra with the microscope spectrophotometer MSFU-K and comparing the spectral characteristics of color in fiber samples. The expert determines whether the textile fibers submitted for analysis match in color or not, depending on the results of spectral comparison.The proposed validation experiment algorithm is designed for evaluating uncertainty in optical density measurements and the level of expert competence.In this case uncertainty corresponds to reproducibility standard deviation. To evaluate uncertainty, two operators took readings of absorption spectra of dyed fibers independently in the course of three days, and measured optical density at maximum and minimum absorption wavelengths. To evaluate repeatability, 5 spectra were obtained in a row on each of the three days.The testing was conducted using three samples of polyacrylonitrile (PAN) fibers. Key characteristic points in the samplesβ absorption spectra covered a wide range of wavelengths in the visible spectrum. Measurements were taken using the MSFU-K microspectrophotometer, which consists of a microscope with a spectrophotometric add-on unit.Statistical analysis of measurement data demonstrated uncertainty levels between 7,1 % and 22,1 %. Uncertainty values below 30 % are indicative of quantitative measurements and insignificant variance of optical density values, which corresponds to high reproducibility of spectra and allows the expert to make statistically reliable match/non-match conclusions on the color of compared fibers.Expert competence was assessed based on Β«blindΒ» test results. The experts had to determine which of the three samples were colored with the same dye. Each of the two experts was provided with 3 visually identical samples that were colored with different dyes. The experts were asked to distinguish between fibers treated with the same dye. When analyzing obtained spectra, both experts correctly identified same-color fibers based on matching color spectral characteristics.Positive validation results suggest that the MSFU-K microscope spectrophotometer can be successfully used in forensic fiber analysis for measuring the color of dyed fibers.Β Π‘ΡΠ°ΡΡΡ ΠΈΠ· ΡΠ΅ΡΠΈΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΎΠΊ ΠΏΠΎ Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΡ
ΠΏΡΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅ ΠΊΡΠΈΠΌΠΈΠ½Π°Π»ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Ρ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ².Π‘ΡΡΠ½ΠΎΡΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠ° ΠΠ‘Π€Π£-Π ΡΠΏΠ΅ΠΊΡΡΠ° ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ ΠΈ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠ²Π΅ΡΠ° ΡΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΡΠΊΡΠΏΠ΅ΡΡ ΡΠ΅ΡΠ°Π΅Ρ Π²ΠΎΠΏΡΠΎΡ, ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ/Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΡΠ²Π΅Ρ ΡΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ
Π½Π° ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Ρ.ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΡ
Π΅ΠΌΠ° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΈ, Π·Π°Π΄Π°ΡΠ°ΠΌΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²Π»ΡΠ»ΠΈΡΡ ΠΎΡΠ΅Π½ΠΊΠ° Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΡΠΎΠ²Π½Ρ ΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΡΠΊΡΠΏΠ΅ΡΡΠΎΠ².Π ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΡΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΠΌ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ (Π‘ΠΠ) Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ Π΄Π²Π° ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ° ΡΠ½ΠΈΠΌΠ°Π»ΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ
Π΄Π½Π΅ΠΉ ΡΠΏΠ΅ΠΊΡΡΡ ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΠ»ΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ Π² ΡΠΎΡΠΊΠ°Ρ
ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°. ΠΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ, ΡΠ½ΠΈΠΌΠ°Ρ Π² ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΡΠ΅Ρ
Π΄Π½Π΅ΠΉ ΠΏΠΎ ΠΏΡΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΠΏΠΎΠ΄ΡΡΠ΄.ΠΠ»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ Π²ΡΠ±ΡΠ°Π½Ρ ΡΡΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ° ΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΈΠ°ΠΊΡΠΈΠ»ΠΎΠ½ΠΈΡΡΠΈΠ»ΡΠ½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ (Π½ΠΈΡΡΠΎΠ½). ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΎΡ
Π²Π°ΡΡΠ²Π°ΡΡ ΡΠΈΡΠΎΠΊΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°. ΠΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΈ Π½Π° ΠΌΠΈΠΊΡΠΎΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠ΅ ΠΠ‘Π€Π£-Π, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏ ΡΠΎ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠ°Π΄ΠΊΠΎΠΉ.Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΡ Π²Π°ΡΡΠΈΡΡΠ΅Ρ ΠΎΡ 7,1 Π΄ΠΎ 22,1 %. ΠΠ½Π°ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ <30 % ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, Π½Π΅ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΡΠ°Π·Π±ΡΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΡΡΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π²ΡΡΠΎΠΊΠΎΠΉ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΊΡΠΏΠ΅ΡΡΡ Π΄Π΅Π»Π°ΡΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎ ΡΠΎΠ²ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ/Π½Π΅ΡΠΎΠ²ΠΏΠ°Π΄Π΅Π½ΠΈΠΈ ΡΠ²Π΅ΡΠ° ΡΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½.ΠΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΡ ΡΠΊΡΠΏΠ΅ΡΡΠΎΠ² ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ Β«ΡΠ»Π΅ΠΏΡΡ
Β» ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ. ΠΠΊΡΠΏΠ΅ΡΡΡ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±ΡΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ, ΠΊΠ°ΠΊΠΈΠ΅ ΠΈΠ· ΡΡΠ΅Ρ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ ΠΎΠΊΡΠ°ΡΠ΅Π½Ρ ΠΎΠ΄Π½ΠΈΠΌ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Π΅ΠΌ. ΠΠ²ΡΠΌ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»Π΅Π½Ρ ΠΏΠΎ ΡΡΠΈ ΠΎΠ±ΡΠ°Π·ΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎ ΡΠ²Π΅ΡΡ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ ΡΠ°Π·Π»ΠΈΡΠ°Π»ΠΈΡΡ, Π½ΠΎ Π±ΡΠ»ΠΈ ΠΎΠΊΡΠ°ΡΠ΅Π½Ρ ΡΠ°Π·Π½ΡΠΌΠΈ ΠΊΡΠ°ΡΠΈΡΠ΅Π»ΡΠΌΠΈ. ΠΠ΅ΡΠ΅Π΄ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ ΡΡΠ°Π²ΠΈΠ»Π°ΡΡ Π·Π°Π΄Π°ΡΠ° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ Π²ΠΎΠ»ΠΎΠΊΠ½Π°, ΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Π΅ΠΌ. ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΠΊΠ°ΠΆΠ΄ΡΠΌ ΡΠΊΡΠΏΠ΅ΡΡΠΎΠΌ Π±ΡΠ»ΠΈ ΡΠ΄Π΅Π»Π°Π½Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎΠ± ΠΎΠ΄Π½ΠΎΡΠ²Π΅ΡΠ½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠ½Π°Ρ
, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΡ
ΠΏΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌ ΡΠ²Π΅ΡΠ°.ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π²Π°Π»ΠΈΠ΄Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° ΡΠ΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ° ΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΡΡ
Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π½Π° ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ΅-ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠ΅ ΠΠ‘Π€Π£-Π Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΊΡΠΈΠΌΠΈΠ½Π°Π»ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Π΅ Π²ΠΎΠ»ΠΎΠΊΠ½ΠΈΡΡΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ².
Recommended from our members
A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types
The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility, and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a novel leptin-sensing neuronal population, multiple AgRP and POMC subtypes, and an orexigenic somatostatin neuronal population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinctly responsive subtypes of AgRP and POMC neurons. Finally, integrating our data with human GWAS data implicates two previously unknown neuronal subtypes in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred
Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir
The widely accepted paradigm of Earth's geochemical evolution states that the successive extraction of melts from the mantle over the past 4.5 billion years formed the continental crust, and produced at least one complementary melt-depleted reservoir that is now recognized as the upper-mantle source of mid-ocean-ridge basalts1. However, geochemical modelling and the occurrence of high 3He/4He (that is, primordial) signatures in some volcanic rocks suggest that volumes of relatively undifferentiated mantle may reside in deeper, isolated regions2. Some basalts from large igneous provinces may provide temporally restricted glimpses of the most primitive parts of the mantle3,4, but key questions regarding the longevity of such sources on planetary timescalesβand whether any survive todayβremain unresolved. Kimberlites, small-volume volcanic rocks that are the source of most diamonds, offer rare insights into aspects of the composition of the Earthβs deep mantle. The radiogenic isotope ratios of kimberlites of different ages enable us to map the evolution of this domain through time. Here we show that globally distributed kimberlites originate from a single homogeneous reservoir with an isotopic composition that is indicative of a uniform and pristine mantle source, which evolved in isolation over at least 2.5 billion years of Earth historyβto our knowledge, the only such reservoir that has been identified to date. Around 200 million years ago, extensive volumes of the same source were perturbed, probably as a result of contamination by exogenic material. The distribution of affected kimberlites suggests that this event may be related to subduction along the margin of the Pangaea supercontinent. These results reveal a long-lived and globally extensive mantle reservoir that underwent subsequent disruption, possibly heralding a marked change to large-scale mantle-mixing regimes. These processes may explain why uncontaminated primordial mantle is so difficult to identify in recent mantle-derived melts
- β¦