8,316 research outputs found

    Tunneling magnetoresistance in diluted magnetic semiconductor tunnel junctions

    Full text link
    Using the spin-polarized tunneling model and taking into account the basic physics of ferromagnetic semiconductors, we study the temperature dependence of the tunneling magnetoresistance (TMR) in the diluted magnetic semiconductor (DMS) trilayer heterostructure system (Ga,Mn)As/AlAs/(Ga,Mn)As. The experimentally observed TMR ratio is in reasonable agreement with our result based on the typical material parameters. It is also shown that the TMR ratio has a strong dependence on both the itinerant-carrier density and the magnetic ion density in the DMS electrodes. This can provide a potential way to achieve larger TMR ratio by optimally adjusting the material parameters.Comment: 5 pages (RevTex), 3 figures (eps), submitted to PR

    Prediction of noise from serrated trailing edges

    Get PDF
    A new analytical model is developed for the prediction of noise from serrated trailing edges. The model generalizes Amiet’s trailing-edge noise theory to sawtooth trailing edges, resulting in a complicated partial differential equation. The equation is then solved by means of a Fourier expansion technique combined with an iterative procedure. The solution is validated through comparison with the finite element method for a variety of serrations at different Mach numbers. The results obtained using the new model predict noise reduction of up to 10 dB at 90^{\circ } above the trailing edge, which is more realistic than predictions based on Howe’s model and also more consistent with experimental observations. A thorough analytical and numerical analysis of the physical mechanism is carried out and suggests that the noise reduction due to serration originates primarily from interference effects near the trailing edge. A closer inspection of the proposed mathematical model has led to the development of two criteria for the effectiveness of the trailing-edge serrations, consistent but more general than those proposed by Howe. While experimental investigations often focus on noise reduction at 90^{\circ } above the trailing edge, the new analytical model shows that the destructive interference scattering effects due to the serrations cause significant noise reduction at large polar angles, near the leading edge. It has also been observed that serrations can significantly change the directivity characteristics of the aerofoil at high frequencies and even lead to noise increase at high Mach numbers.The first author (BL) wishes to gratefully acknowledge the financial support co-funded by the Cambridge Commonwealth European and International Trust and China Scholarship Council. The second author (MA) would like to acknowledge the financial support of the Royal Academy of Engineering. The third author (SS) wishes to gratefully acknowledge the support of the Royal Commission for the exhibition of 1851.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.13

    Complex polymer topologies in blends: Shear and elongational rheology of linear/pom-pom polystyrene blends

    Get PDF
    The shear and elongational rheology of linear and pom-pom shaped polystyrene (PS) blends was investigated experimentally and modeled using constitutive models such as the Doi–Edwards and the molecular stress function (MSF) model. The pom-pom molecule is the simplest topology to combine shear thinning with strain hardening in elongational flow. A PS pom-pom with a self-entangled backbone (Mw,bb_{w,bb} = 280 kg mol1^{−1}) and 22 entangled sidearms (Mw,a_{w,a} = 22 kg mol1^{−1}) at each star was blended with two linear PS with weight average molecular weights of Mw_w = 43 and 90 kg mol1^{−1} and low polydispersities (Ð < 1.05). A semilogarithmic relationship between the weight content of the pom-pom, ϕpompom_{pom-pom}, and the zero-shear viscosity was found. Whereas the pure pom-pom has in uniaxial elongational flow at T = 160 °C strain hardening factors (SHFs) of SHF ≈100, similar values can be found in blends with up to ϕpompom_{pom-pom} = 50 wt. % in linear PS43k and PS90k. By blending only 2 wt. % pom-pom with linear PS43k, SHF = 10 can still be observed. Furthermore, above ϕpompom_{pom-pom} = 5–10 wt. %, the uniaxial extensional behavior can be well-described with the MSF model with a single parameter set for each linear PS matrix. The results show that the relationship between shear and elongational melt behavior, i.e., zero-shear viscosity and SHF, can be uncoupled and customized tuned by blending linear and pom-pom shaped polymers and very straightforwardly predicted theoretically. This underlines also the possible application of well-designed branched polymers as additives in recycling

    Detecting time-fragmented cache attacks against AES using Performance Monitoring Counters

    Get PDF
    Cache timing attacks use shared caches in multi-core processors as side channels to extract information from victim processes. These attacks are particularly dangerous in cloud infrastructures, in which the deployed countermeasures cause collateral effects in terms of performance loss and increase in energy consumption. We propose to monitor the victim process using an independent monitoring (detector) process, that continuously measures selected Performance Monitoring Counters (PMC) to detect the presence of an attack. Ad-hoc countermeasures can be applied only when such a risky situation arises. In our case, the victim process is the AES encryption algorithm and the attack is performed by means of random encryption requests. We demonstrate that PMCs are a feasible tool to detect the attack and that sampling PMCs at high frequencies is worse than sampling at lower frequencies in terms of detection capabilities, particularly when the attack is fragmented in time to try to be hidden from detection

    Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Life Cycle Assessment

    Get PDF
    Modern intensive agriculture worldwide is generating increasing environmental pressure, which prevents its sustainable development. A number of agricultural sustainability assessment approaches and methodological frameworks have been developed by research worldwide to assess the environmental costs and impacts of resources used in agricultural production. A joint use of Life Cycle Assessment (LCA, to assess a process' performance and environmental impacts) and Emergy Accounting (EMA, to estimate environmental support to resource generation and provision) is proposed in this study. The goal is not only to ascertain the environmental ‘cost’ of production of selected chemical resources used in agricultural processes, but also to develop a reliable calculation procedure capable to integrate the two approaches (LCA and EMA), while considering their different allocation algebra and space-time scales of application. Specifically, the UEVs of glyphosate and urea, which are respectively the most used herbicide and nitrogen fertilizer used in worldwide agriculture, are calculated, yielding values of 2.47E+13 sej/kg and 7.07E+12 sej/kg, respectively. In order to do so, UEVs of intermediate process chemicals such as ammonia, acetic anhydride, chlorine gas, formaldehyde, phosphorous chloride, and sodium hydroxide have also been calculated or updated, thus providing at the same time a procedure and a set of values potentially useful for future studies. The LCA impacts of agro-chemicals in China are compared to worldwide averages from the Ecoinvent database, and the UEVs for several chemicals are also compared to previous estimates from published emergy literature

    Structure and electronic properties of the (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_2/Au(111) surface alloy

    Full text link
    We have investigated the atomic and electronic structure of the (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_2/Au(111) surface alloy. Low energy electron diffraction and scanning tunneling microscopy measurements show that the native herringbone reconstruction of bare Au(111) surface remains intact after formation of a long range ordered (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_22/Au(111) surface alloy. Angle-resolved photoemission and two-photon photoemission spectroscopy techniques reveal Rashba-type spin-split bands in the occupied valence band with comparable momentum space splitting as observed for the Au(111) surface state, but with a hole-like parabolic dispersion. Our experimental findings are compared with density functional theory (DFT) calculation that fully support our experimental findings. Taking advantage of the good agreement between our DFT calculations and the experimental results, we are able to extract that the occupied Sn-Au hybrid band is of (s, d)-orbital character while the unoccupied Sn-Au hybrid bands are of (p, d)-orbital character. Hence, we can conclude that the Rashba-type spin splitting of the hole-like Sn-Au hybrid surface state is caused by the significant mixing of Au d- to Sn s-states in conjunction with the strong atomic spin-orbit coupling of Au, i.e., of the substrate.Comment: Copyright: https://journals.aps.org/authors/transfer-of-copyright-agreement; All copyrights by AP

    Rural unemployment pushes migrants to urban areas in Jiangsu Province, China

    Full text link
    © 2019, The Author(s). Migration is often seen as an adaptive human response to adverse socio-environmental conditions, such as water scarcity. A rigorous assessment of the causes of migration, however, requires reliable information on the migration in question and related variables, such as, unemployment, which is often missing. This study explores the causes of one such type of migration, from rural to urban areas, in the Jiangsu province of China. A migration model is developed to fill a gap in the understanding of how rural to urban migration responds to variations in inputs to agricultural production including water availability and labor and how rural population forms expectations of better livelihood in urban areas. Rural to urban migration is estimated at provincial scale for period 1985–2013 and is found to be significantly linked with rural unemployment. Further, migration reacts to a change in rural unemployment after 2–4 years with 1% increase in rural unemployment, on average, leading to migration of 16,000 additional people. This implies that rural population takes a couple of years to internalize a shock in employment opportunities before migrating to cities. The analysis finds neither any evidence of migrants being pulled by better income prospects to urban areas nor being pushed out of rural areas by water scarcity. Corroborated by rural–urban migration in China migration survey data for 2008 and 2009, this means that local governments have 2–4 years of lead time after an unemployment shock, not necessarily linked to water scarcity, in rural areas to prepare for the migration wave in urban areas. This original analysis of migration over a 30-year period and finding its clear link with unemployment, and not with better income in urban areas or poor rainfall, thus provides conclusive evidence in support of policy interventions that focus on generating employment opportunities in rural areas to reduce migration flow to urban areas

    Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester.

    Get PDF
    Sorbent-assisted water harvesting from air represents an attractive way to address water scarcity in arid climates. Hitherto, sorbents developed for this technology have exclusively been designed to perform one water harvesting cycle (WHC) per day, but the productivities attained with this approach cannot reasonably meet the rising demand for drinking water. This work shows that a microporous aluminum-based metal-organic framework, MOF-303, can perform an adsorption-desorption cycle within minutes under a mild temperature swing, which opens the way for high-productivity water harvesting through rapid, continuous WHCs. Additionally, the favorable dynamic water sorption properties of MOF-303 allow it to outperform other commercial sorbents displaying excellent steady-state characteristics under similar experimental conditions. Finally, these findings are implemented in a new water harvester capable of generating 1.3 L kgMOF -1 day-1 in an indoor arid environment (32% relative humidity, 27 °C) and 0.7 L kgMOF -1 day-1 in the Mojave Desert (in conditions as extreme as 10% RH, 27 °C), representing an improvement by 1 order of magnitude over previously reported devices. This study demonstrates that creating sorbents capable of rapid water sorption dynamics, rather than merely focusing on high water capacities, is crucial to reach water production on a scale matching human consumption

    Towards Gradient-Based Design Optimization of Flexible Transport Aircraft with Flutter Constraints

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140443/1/6.2014-2726.pd
    corecore