308 research outputs found

    Critical wave-packet dynamics in the power-law bond disordered Anderson Model

    Full text link
    We investigate the wave-packet dynamics of the power-law bond disordered one-dimensional Anderson model with hopping amplitudes decreasing as HnmnmαH_{nm}\propto |n-m|^{-\alpha}. We consider the critical case (α=1\alpha=1). Using an exact diagonalization scheme on finite chains, we compute the participation moments of all stationary energy eigenstates as well as the spreading of an initially localized wave-packet. The eigenstates multifractality is characterized by the set of fractal dimensions of the participation moments. The wave-packet shows a diffusive-like spread developing a power-law tail and achieves a stationary non-uniform profile after reflecting at the chain boundaries. As a consequence, the time-dependent participation moments exhibit two distinct scaling regimes. We formulate a finite-size scaling hypothesis for the participation moments relating their scaling exponents to the ones governing the return probability and wave-function power-law decays

    Bloch oscillations in an aperiodic one-dimensional potential

    Get PDF
    We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-electron states separated by two mobility edges. We show that the electric field promotes sustained Bloch oscillations of an initial Gaussian wave packet whose amplitude reflects the band width of extended states. The frequency of these oscillations exhibit unique features, such as a sensitivity to the initial wave packet position and a multimode structure for weak fields, originating from the characteristics of the underlying aperiodic potential.Comment: 6 pages, 7 figure

    Bostonia. Volume 6

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Rossby Wave Instability and three-dimensional vortices in accretion disks

    Full text link
    Context. The formation of vortices in accretion disks is of high interest in various astrophysical contexts, in particular for planet formation or in the disks of compact objects. But despite numerous attempts it has thus far not been possible to produce strong vortices in fully three-dimensional simulations of disks. Aims. The aim of this paper is to present the first 3D simulation of a strong vortex, established across the vertically stratified structure of a disk by the Rossby Wave Instability. Methods. Using the Versatile Advection Code (VAC), we set up a fully 3D cylindrical stratified disk potentially prone to the Rossby Wave Instability. Results. The simulation confirms the basic expectations obtained from previous 2D analytic and numerical works. The simulation exhibits a strong vortex that grows rapidly and saturates at a finite amplitude. On the other hand the third dimension shows unexpected additional behaviours that could be of strong importance in the astrophysical roles that such vortices can play.Comment: Accepted by Astronomy and Astrophysic

    Localization properties of a one-dimensional tight-binding model with non-random long-range inter-site interactions

    Get PDF
    We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with stochastic uncorrelated on-site energies and non-fluctuating long-range hopping integrals . It was argued recently [A. Rodriguez at al., J. Phys. A: Math. Gen. 33, L161 (2000)] that this model reveals a localization-delocalization transition with respect to the disorder magnitude provided . The transition occurs at one of the band edges (the upper one for and the lower one for). The states at the other band edge are always localized, which hints on the existence of a single mobility edge. We analyze the mobility edge and show that, although the number of delocalized states tends to infinity, they form a set of null measure in the thermodynamic limit, i.e. the mobility edge tends to the band edge. The critical magnitude of disorder for the band edge states is computed versus the interaction exponent by making use of the conjecture on the universality of the normalized participation number distribution at transition.Comment: 7 pages, 6 postscript figures, uses revtex

    Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics

    Full text link
    We uncover the dynamics at the chaos threshold μ\mu_{\infty} of the logistic map and find it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ\mu <\mu_{\infty}. We corroborate this structure analytically via the Feigenbaum renormalization group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a qq-exponential, of which we determine the qq-index and the qq-generalized Lyapunov coefficient λq\lambda _{q}. Our results are an unequivocal validation of the applicability of the non-extensive generalization of Boltzmann-Gibbs (BG) statistical mechanics to critical points of nonlinear maps.Comment: Revtex, 3 figures. Updated references and some general presentation improvements. To appear published as a Rapid communication of PR

    A recent appreciation of the singular dynamics at the edge of chaos

    Full text link
    We study the dynamics of iterates at the transition to chaos in the logistic map and find that it is constituted by an infinite family of Mori's qq-phase transitions. Starting from Feigenbaum's σ\sigma function for the diameters ratio, we determine the atypical weak sensitivity to initial conditions ξt\xi _{t} associated to each qq-phase transition and find that it obeys the form suggested by the Tsallis statistics. The specific values of the variable qq at which the qq-phase transitions take place are identified with the specific values for the Tsallis entropic index qq in the corresponding ξt\xi_{t}. We describe too the bifurcation gap induced by external noise and show that its properties exhibit the characteristic elements of glassy dynamics close to vitrification in supercooled liquids, e.g. two-step relaxation, aging and a relationship between relaxation time and entropy.Comment: Proceedings of: Verhulst 200 on Chaos, Brussels 16-18 September 2004, Springer Verlag, in pres

    Thin Domain Walls in Lyra Geometry

    Get PDF
    This paper studies thin domain walls within the frame work of Lyra Geometry. We have considered two models. First one is the thin domain wall with negligible pressures perpendicular and transverse direction to the wall and secondly, we take a particular type of thin domain wall where the pressure in the perpendicular direction is negligible but transverse pressures are existed. It is shown that the thin domain walls have no particle horizon and the gravitational force due to them is attractive.Comment: 8 pages, typos are corrected, published Astrophysics and Space Sciences 305, 337 (2006

    Magnon delocalization in ferromagnetic chains with long-range correlated disorder

    Full text link
    We study one-magnon excitations in a random ferromagnetic Heisenberg chain with long-range correlations in the coupling constant distribution. By employing an exact diagonalization procedure, we compute the localization length of all one-magnon states within the band of allowed energies EE. The random distribution of coupling constants was assumed to have a power spectrum decaying as S(k)1/kαS(k)\propto 1/k^{\alpha}. We found that for α<1\alpha < 1, one-magnon excitations remain exponentially localized with the localization length ξ\xi diverging as 1/E. For α=1\alpha = 1 a faster divergence of ξ\xi is obtained. For any α>1\alpha > 1, a phase of delocalized magnons emerges at the bottom of the band. We characterize the scaling behavior of the localization length on all regimes and relate it with the scaling properties of the long-range correlated exchange coupling distribution.Comment: 7 Pages, 5 figures, to appear in Phys. Rev.
    corecore