20,430 research outputs found

    Validation of an expert system intended for research in distributed artificial intelligence

    Get PDF
    The expert system discussed in this paper is designed to function as a testbed for research on cooperating expert systems. Cooperating expert systems are members of an organization which dictates the manner in which the expert systems will interact when solving a problem. The Blackbox Expert described in this paper has been constructed using the C Language Integrated Production System (CLIPS), C++, and X windowing environment. CLIPS is embedded in a C++ program which provides objects that are used to maintain the state of the Blackbox puzzle. These objects are accessed by CLIPS rules through user-defined functions calls. The performance of the Blackbox Expert is validated by experimentation. A group of people are asked to solve a set of test cases for the Blackbox puzzle. A metric has been devised which evaluates the 'correctness' of a solution proposed for a test case of Blackbox. Using this metric and the solutions proposed by the humans, each person receives a rating for their ability to solve the Blackbox puzzle. The Blackbox Expert solves the same set of test cases and is assigned a rating for its ability. Then the rating obtained by the Blackbox Expert is compared with the ratings of the people, thus establishing the skill level of our expert system

    Morphogenesis along the animal-vegetal axis: fates of primary quartet micromere daughters in the gastropod Crepidula fornicata.

    Get PDF
    BackgroundThe Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo.ResultsThis study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a2-1d2 cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole.ConclusionsThis is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a2-1d2 cells (in addition to two cells derived from 1d12, and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed

    LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions.

    Get PDF
    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu)

    Formation of the stable auroral arc that intensifies at substorm onset

    Get PDF
    In a companion paper, we present observational evidence that the stable, growth-phase auroral arc that intensifies at substorm expansion phase onset often forms on magnetic field lines that map to within approximately 1 to 2 R(sub e) of synchronous. The equatorial plasma pressure is 1 to 10 nPa in this region, which can give a cross-tail current greater than 0.1 A/m. In this paper, we propose that the arc is formed by a perpendicular magnetospheric-current divergence that results from a strong dawn-to-dusk directed pressure gradient in the vicinity of magnetic midnight. We estimate that the current divergence is sufficiently strong that a is greater than 1 kV field-aligned potential drop is required to maintain ionospheric-current continuity. We suggest that the azimuthal pressure gradient results from proton drifts in the vicinity of synchronous orbit that are directed nearly parallel to the cross-tail electric field

    Prediction of the consequences of a CO2 pipeline release on building occupants

    Get PDF
    Carbon Capture and Storage (CCS) is recognised as one of a suite of solutions required to reduce carbon dioxide (CO2) emissions into the atmosphere and prevent catastrophic global climate change. In CCS schemes, CO2 is captured from large scale industrial emitters and transported to geological sites, such as depleted oil or gas fields or saline aquifers, where it is injected into the rock formation for storage. Pipelines are acknowledged as one of the safest, most efficient and cost-effective methods for transporting large volumes of fluid over long distances and therefore most of the proposed schemes for CCS involve onshore and/or offshore high pressure pipelines transporting CO2.In order to manage the risk in the unlikely event of the failure of a CO2 pipeline, it is necessary to define the separation distance between pipelines and habitable dwellings in order to ensure a consistent level of safety. For natural gas pipelines, existing and accepted QRA (Quantitative Risk Assessment) techniques can be implemented to define safety zones based on thermal hazards. However for high pressure CO2 pipelines, for which the hazard is toxic, the consequences of failure need to be considered differently, which will impact on the QRA assessment and the definition of safety distances.The requirement to develop a robust QRA methodology for high pressure CO2 pipelines has been recognised by National Grid as being critical to the implementation of CCS. Consequently, as part of the COOLTRANS (CO2 Liquid pipeline TRANSportation) research programme, failure frequency and consequence models are being developed that are appropriate for high pressure CO2 pipelines. One of the key components in the consequence modelling of a release from a CO2 pipeline is an infiltration model for CO2 into buildings to describe the impact on people inside buildings, and outside seeking shelter, during a release event.This paper describes the development of an infiltration model to predict how the concentration of CO2 within a building will change based on both wind driven and buoyancy driven ventilation of an external CO2 cloud into the building. The model considers the effects of either a constant or changing external concentration of CO2 during a release and allows the density effects of the dense cloud to be taken into account to enable the toxic effects on people within the building to be predicted. The paper then demonstrates how the ventilation model can be coupled to the results of a dispersion analysis from a pipeline release under different environmental conditions to develop the consequence data required for input into the QRA. These effects are illustrated through a case study example
    • …
    corecore