17,894 research outputs found

    Algebraic structure of stochastic expansions and efficient simulation

    Full text link
    We investigate the algebraic structure underlying the stochastic Taylor solution expansion for stochastic differential systems.Our motivation is to construct efficient integrators. These are approximations that generate strong numerical integration schemes that are more accurate than the corresponding stochastic Taylor approximation, independent of the governing vector fields and to all orders. The sinhlog integrator introduced by Malham & Wiese (2009) is one example. Herein we: show that the natural context to study stochastic integrators and their properties is the convolution shuffle algebra of endomorphisms; establish a new whole class of efficient integrators; and then prove that, within this class, the sinhlog integrator generates the optimal efficient stochastic integrator at all orders.Comment: 19 page

    High-Precision Entropy Values for Spanning Trees in Lattices

    Full text link
    Shrock and Wu have given numerical values for the exponential growth rate of the number of spanning trees in Euclidean lattices. We give a new technique for numerical evaluation that gives much more precise values, together with rigorous bounds on the accuracy. In particular, the new values resolve one of their questions.Comment: 7 pages. Revision mentions alternative approach. Title changed slightly. 2nd revision corrects first displayed equatio

    Dynamical percolation on general trees

    Full text link
    H\"aggstr\"om, Peres, and Steif (1997) have introduced a dynamical version of percolation on a graph GG. When GG is a tree they derived a necessary and sufficient condition for percolation to exist at some time tt. In the case that GG is a spherically symmetric tree, H\"aggstr\"om, Peres, and Steif (1997) derived a necessary and sufficient condition for percolation to exist at some time tt in a given target set DD. The main result of the present paper is a necessary and sufficient condition for the existence of percolation, at some time t∈Dt\in D, in the case that the underlying tree is not necessary spherically symmetric. This answers a question of Yuval Peres (personal communication). We present also a formula for the Hausdorff dimension of the set of exceptional times of percolation.Comment: 24 pages; to appear in Probability Theory and Related Field

    Personality, Interpersonal Disagreement, and Electoral Information

    Get PDF
    Interpersonal disagreement has been linked to a variety of democratic outcomes, and classic theories of social influence place it at the heart of opinion formation. We examine the relationship between exposure to disagreement and information seeking during elections, while developing and testing a theory of heterogeneous effects based on recent work on personality and discussion (e.g., Gerber et al. 2012). Using a simulated campaign experiment (Lau and Redlawsk 2006) and data from the 2008–9 ANES panel study, we find consistent evidence that personality conditions responses to disagreement in expected ways—it enhances effects for those with certain traits, while suppressing it for those with others. We close by reflecting on this pattern of results, discussing broader implications while moving toward a more general theory of social influence

    Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    Get PDF
    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered

    G-Brownian Motion as Rough Paths and Differential Equations Driven by G-Brownian Motion

    Full text link
    The present paper is devoted to the study of sample paths of G-Brownian motion and stochastic differential equations (SDEs) driven by G-Brownian motion from the view of rough path theory. As the starting point, we show that quasi-surely, sample paths of G-Brownian motion can be enhanced to the second level in a canonical way so that they become geometric rough paths of roughness 2 < p < 3. This result enables us to introduce the notion of rough differential equations (RDEs) driven by G-Brownian motion in the pathwise sense under the general framework of rough paths. Next we establish the fundamental relation between SDEs and RDEs driven by G-Brownian motion. As an application, we introduce the notion of SDEs on a differentiable manifold driven by GBrownian motion and construct solutions from the RDE point of view by using pathwise localization technique. This is the starting point of introducing G-Brownian motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin. The last part of this paper is devoted to such construction for a wide and interesting class of G-functions whose invariant group is the orthogonal group. We also develop the Euler-Maruyama approximation for SDEs driven by G-Brownian motion of independent interest

    Raman Scattering and Anomalous Current Algebra: Observation of Chiral Bound State in Mott Insulators

    Full text link
    Recent experiments on inelastic light scattering in a number of insulating cuprates [1] revealed a new excitation appearing in the case of crossed polarizations just below the optical absorption threshold. This observation suggests that there exists a local exciton-like state with an odd parity with respect to a spatial reflection. We present the theory of high energy large shift Raman scattering in Mott insulators and interpret the experiment [1] as an evidence of a chiral bound state of a hole and a doubly occupied site with a topological magnetic excitation. A formation of these composites is a crucial feature of various topological mechanisms of superconductivity. We show that inelastic light scattering provides an instrument for direct measurements of a local chirality and anomalous terms in the electronic current algebra.Comment: 18 pages, TeX, C Version 3.

    The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences

    Get PDF
    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses

    CE19012

    Get PDF
    In the southwest of Ireland and the Celtic Sea (ICES Divisions VIIaS, g & j), herring are an important commercial species to the pelagic and polyvalent fleet. For a period in the 1970s and1980s, larval surveys were conducted for herring in this area. However, since 1989, acoustic surveys have been carried out, and currently are the only tuning indices available for this stock. In the Celtic Sea and VIIj, herring acoustic surveys have been carried out since 1989. Since 2004 the survey has been fixed in October and carried out onboard the RV Celtic Explorer. The geographical confines of the annual 21 day survey have been modified in recent years to include areas to the south of the main winter spawning grounds in an effort to identify the whereabouts of winter spawning fish before the annual inshore spawning migration. Spatial resolution of acoustic transects has been increased over the entire south coast survey area. The acoustic component of the survey has been further complemented since 2004 by detailed hydrographic, marine mammal and seabird surveys

    Magnetospheric reconnection driven by solar wind pressure fronts

    Get PDF
    International audienceRecent work has shown that solar wind dynamic pressure changes can have a dramatic effect on the particle precipitation in the high-latitude ionosphere. It has also been noted that the preexisting interplanetary magnetic field (IMF) orientation can significantly affect the resulting changes in the size, location, and intensity of the auroral oval. Here we focus on the effect of pressure pulses on the size of the auroral oval. We use particle precipitation data from up to four Defense Meteorological Satellite Program (DMSP) spacecraft and simultaneous POLAR Ultra-Violet Imager (UVI) images to examine three events of solar wind pressure fronts impacting the magnetosphere under two IMF orientations, IMF strongly southward and IMF Bz nearly zero before the pressure jump. We show that the amount of change in the oval and polar cap sizes and the local time extent of the change depends strongly on IMF conditions prior to the pressure enhancement. Under steady southward IMF, a remarkable poleward widening of the oval at all magnetic local times and shrinking of the polar cap are observed after the increase in solar wind pressure. When the IMF Bz is nearly zero before the pressure pulse, a poleward widening of the oval is observed mostly on the nightside while the dayside remains unchanged. We interpret these differences in terms of enhanced magnetospheric reconnection and convection induced by the pressure change. When the IMF is southward for a long time before the pressure jump, open magnetic flux is accumulated in the tail and strong convection exists in the magnetosphere. The compression results in a great enhancement of reconnection across the tail which, coupled with an increase of magnetospheric convection, leads to a dramatic poleward expansion of the oval at all MLTs (dayside and nightside). For near-zero IMF Bz before the pulse the open flux in the tail, available for closing through reconnection, is smaller. This, in combination with the weaker magnetospheric convection, leads to a more limited poleward expansion of the oval, mostly on the nightside. Key words. Magnetospheric physics (solar windmagnetosphere interactions; magnetospheric configuration and dynamics; auroral phenomena
    • …
    corecore