17,894 research outputs found
Algebraic structure of stochastic expansions and efficient simulation
We investigate the algebraic structure underlying the stochastic Taylor
solution expansion for stochastic differential systems.Our motivation is to
construct efficient integrators. These are approximations that generate strong
numerical integration schemes that are more accurate than the corresponding
stochastic Taylor approximation, independent of the governing vector fields and
to all orders. The sinhlog integrator introduced by Malham & Wiese (2009) is
one example. Herein we: show that the natural context to study stochastic
integrators and their properties is the convolution shuffle algebra of
endomorphisms; establish a new whole class of efficient integrators; and then
prove that, within this class, the sinhlog integrator generates the optimal
efficient stochastic integrator at all orders.Comment: 19 page
High-Precision Entropy Values for Spanning Trees in Lattices
Shrock and Wu have given numerical values for the exponential growth rate of
the number of spanning trees in Euclidean lattices. We give a new technique for
numerical evaluation that gives much more precise values, together with
rigorous bounds on the accuracy. In particular, the new values resolve one of
their questions.Comment: 7 pages. Revision mentions alternative approach. Title changed
slightly. 2nd revision corrects first displayed equatio
Dynamical percolation on general trees
H\"aggstr\"om, Peres, and Steif (1997) have introduced a dynamical version of
percolation on a graph . When is a tree they derived a necessary and
sufficient condition for percolation to exist at some time . In the case
that is a spherically symmetric tree, H\"aggstr\"om, Peres, and Steif
(1997) derived a necessary and sufficient condition for percolation to exist at
some time in a given target set . The main result of the present paper
is a necessary and sufficient condition for the existence of percolation, at
some time , in the case that the underlying tree is not necessary
spherically symmetric. This answers a question of Yuval Peres (personal
communication). We present also a formula for the Hausdorff dimension of the
set of exceptional times of percolation.Comment: 24 pages; to appear in Probability Theory and Related Field
Personality, Interpersonal Disagreement, and Electoral Information
Interpersonal disagreement has been linked to a variety of democratic outcomes, and classic theories of social influence place it at the heart of opinion formation. We examine the relationship between exposure to disagreement and information seeking during elections, while developing and testing a theory of heterogeneous effects based on recent work on personality and discussion (e.g., Gerber et al. 2012). Using a simulated campaign experiment (Lau and Redlawsk 2006) and data from the 2008–9 ANES panel study, we find consistent evidence that personality conditions responses to disagreement in expected ways—it enhances effects for those with certain traits, while suppressing it for those with others. We close by reflecting on this pattern of results, discussing broader implications while moving toward a more general theory of social influence
Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts
Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered
G-Brownian Motion as Rough Paths and Differential Equations Driven by G-Brownian Motion
The present paper is devoted to the study of sample paths of G-Brownian
motion and stochastic differential equations (SDEs) driven by G-Brownian motion
from the view of rough path theory. As the starting point, we show that
quasi-surely, sample paths of G-Brownian motion can be enhanced to the second
level in a canonical way so that they become geometric rough paths of roughness
2 < p < 3. This result enables us to introduce the notion of rough differential
equations (RDEs) driven by G-Brownian motion in the pathwise sense under the
general framework of rough paths. Next we establish the fundamental relation
between SDEs and RDEs driven by G-Brownian motion. As an application, we
introduce the notion of SDEs on a differentiable manifold driven by GBrownian
motion and construct solutions from the RDE point of view by using pathwise
localization technique. This is the starting point of introducing G-Brownian
motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin.
The last part of this paper is devoted to such construction for a wide and
interesting class of G-functions whose invariant group is the orthogonal group.
We also develop the Euler-Maruyama approximation for SDEs driven by G-Brownian
motion of independent interest
Raman Scattering and Anomalous Current Algebra: Observation of Chiral Bound State in Mott Insulators
Recent experiments on inelastic light scattering in a number of insulating
cuprates [1] revealed a new excitation appearing in the case of crossed
polarizations just below the optical absorption threshold. This observation
suggests that there exists a local exciton-like state with an odd parity with
respect to a spatial reflection. We present the theory of high energy large
shift Raman scattering in Mott insulators and interpret the experiment [1] as
an evidence of a chiral bound state of a hole and a doubly occupied site with a
topological magnetic excitation. A formation of these composites is a crucial
feature of various topological mechanisms of superconductivity. We show that
inelastic light scattering provides an instrument for direct measurements of a
local chirality and anomalous terms in the electronic current algebra.Comment: 18 pages, TeX, C Version 3.
The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses
CE19012
In the southwest of Ireland and the Celtic Sea (ICES Divisions VIIaS, g & j), herring are an important commercial species to the pelagic and polyvalent fleet. For a period in the 1970s and1980s, larval surveys were conducted for herring in this area. However, since 1989, acoustic surveys have been carried out, and currently are the only tuning indices available for this stock. In the Celtic Sea and VIIj, herring acoustic surveys have been carried out since 1989. Since 2004 the survey has been fixed in October and carried out onboard the RV Celtic Explorer. The geographical confines of the annual 21 day survey have been modified in recent years to include areas to the south of the main winter spawning grounds in an effort to identify the whereabouts of winter spawning fish before the annual inshore spawning migration. Spatial resolution of acoustic transects has been increased over the entire south coast survey area. The acoustic component of the survey has been further complemented since 2004 by detailed hydrographic, marine mammal and seabird surveys
Magnetospheric reconnection driven by solar wind pressure fronts
International audienceRecent work has shown that solar wind dynamic pressure changes can have a dramatic effect on the particle precipitation in the high-latitude ionosphere. It has also been noted that the preexisting interplanetary magnetic field (IMF) orientation can significantly affect the resulting changes in the size, location, and intensity of the auroral oval. Here we focus on the effect of pressure pulses on the size of the auroral oval. We use particle precipitation data from up to four Defense Meteorological Satellite Program (DMSP) spacecraft and simultaneous POLAR Ultra-Violet Imager (UVI) images to examine three events of solar wind pressure fronts impacting the magnetosphere under two IMF orientations, IMF strongly southward and IMF Bz nearly zero before the pressure jump. We show that the amount of change in the oval and polar cap sizes and the local time extent of the change depends strongly on IMF conditions prior to the pressure enhancement. Under steady southward IMF, a remarkable poleward widening of the oval at all magnetic local times and shrinking of the polar cap are observed after the increase in solar wind pressure. When the IMF Bz is nearly zero before the pressure pulse, a poleward widening of the oval is observed mostly on the nightside while the dayside remains unchanged. We interpret these differences in terms of enhanced magnetospheric reconnection and convection induced by the pressure change. When the IMF is southward for a long time before the pressure jump, open magnetic flux is accumulated in the tail and strong convection exists in the magnetosphere. The compression results in a great enhancement of reconnection across the tail which, coupled with an increase of magnetospheric convection, leads to a dramatic poleward expansion of the oval at all MLTs (dayside and nightside). For near-zero IMF Bz before the pulse the open flux in the tail, available for closing through reconnection, is smaller. This, in combination with the weaker magnetospheric convection, leads to a more limited poleward expansion of the oval, mostly on the nightside. Key words. Magnetospheric physics (solar windmagnetosphere interactions; magnetospheric configuration and dynamics; auroral phenomena
- …