The present paper is devoted to the study of sample paths of G-Brownian
motion and stochastic differential equations (SDEs) driven by G-Brownian motion
from the view of rough path theory. As the starting point, we show that
quasi-surely, sample paths of G-Brownian motion can be enhanced to the second
level in a canonical way so that they become geometric rough paths of roughness
2 < p < 3. This result enables us to introduce the notion of rough differential
equations (RDEs) driven by G-Brownian motion in the pathwise sense under the
general framework of rough paths. Next we establish the fundamental relation
between SDEs and RDEs driven by G-Brownian motion. As an application, we
introduce the notion of SDEs on a differentiable manifold driven by GBrownian
motion and construct solutions from the RDE point of view by using pathwise
localization technique. This is the starting point of introducing G-Brownian
motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin.
The last part of this paper is devoted to such construction for a wide and
interesting class of G-functions whose invariant group is the orthogonal group.
We also develop the Euler-Maruyama approximation for SDEs driven by G-Brownian
motion of independent interest