4,802 research outputs found

    Introduction to the Special Issue on Software Technologies for Embedded & Ubiquitous Systems

    Get PDF
    Ubiquitous embedded systems are one of the technology drivers to improve our daily life, much more than we normally recognize. To engineer such systems we have to overcome many challenges. For example, such systems typically have to support low-power network connection with nearby computing devices in the context of high mobility, while at the same time incorporating the latest hardware developments in order to allow for cost-effective yet powerful systems. The following five articles in this special issue cover two important issues of software technologies for embedded and ubiquitous systems: safety critical systems and wireless networking technologies and applicationsPeer reviewedSubmitted Versio

    Origin of Electric Field Induced Magnetization in Multiferroic HoMnO3

    Full text link
    We have performed polarized and unpolarized small angle neutron scattering experiments on single crystals of HoMnO3 and have found that an increase in magnetic scattering at low momentum transfers begins upon cooling through temperatures close to the spin reorientation transition at TSR ~ 40 K. We attribute the increase to an uncompensated magnetization arising within antiferromagnetic domain walls. Polarized neutron scattering experiments performed while applying an electric field show that the field suppresses magnetic scattering below T ~ 50 K, indicating that the electric field affects the magnetization via the antiferromagnetic domain walls rather than through a change to the bulk magnetic order

    The role of physical environment in leisure service consumption: evidence from a ski resort setting

    Get PDF
    Despite the importance of physical environment in hedonic service consumption, little is known about the extent to which physical environment influences ski resort visitors’ cognition, emotion, and behaviors. This study investigated the relationships among physical environmental stimuli (i.e., layout accessibility, aesthetics, cleanliness, and other visitors), perceived quality of physical environment, excitement, and behavioral intentions in ski resort. This study also attempted to test the moderating role of enduring involvement in the formation of behavioral intentions. Results showed that cleanliness and other visitors significantly and positively influenced visitors’ perceived quality of physical environment and excitement. The results suggest that physical environment is of great importance for the ski resort business. Perceived quality was indeed a significant predictor of excitement, which, in turn, positively influenced behavioral intentions. Finally, the study found that the effect of excitement on behavioral intentions was significant across high and low enduring involvement groups

    Fate of the Peak Effect in a Type-II Superconductor: Multicriticality in the Bragg-Glass Transition

    Full text link
    We have used small-angle-neutron-scattering (SANS) and ac magnetic susceptibility to investigate the global magnetic field H vs temperature T phase diagram of a single crystal Nb in which a first-order transition of Bragg-glass melting (disordering), a peak effect, and surface superconductivity are all observable. It was found that the disappearance of the peak effect is directly related to a multicritical behavior in the Bragg-glass transition. Four characteristic phase boundary lines have been identified on the H-T plane: a first-order line at high fields, a mean-field-like continuous transition line at low fields, and two continuous transition line associated with the onset of surface and bulk superconductivity. All four lines are found to meet at a multicritical point.Comment: 4 figure

    MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells

    Get PDF
    Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs) and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs) from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC) assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs). Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm

    Mean-field model of the ferromagnetic ordering in the superconducting phase of ErNi_2B_2C

    Full text link
    A mean-field model explaining most of the details in the magnetic phase diagram of ErNi_2B_2C is presented. The low-temperature magnetic properties are found to be dominated by the appearance of long-period commensurate structures. The stable structure at low temperatures and zero field is found to have a period of 40 layers along the a direction, and upon cooling it undergoes a first-order transition at T_C = 2.3 K to a different 40-layered structure having a net ferromagnetic component of about 0.4 mu_B/Er. The neutron-diffraction patterns predicted by the two 40-layered structures, above and below T_C, are in agreement with the observations of Choi et al.Comment: 4 pages, 3 figures (Revtex4

    Lockin to Weak Ferromagnetism in TbNi2B2C and ErNi2B2C

    Full text link
    This article describes a model in which ferromagnetism necessarily accompanies a spin-density-wave lockin transition in the borocarbide structure provided the commensurate phase wave vector satisfies Q = (m/n)a* with m even and n odd. The results account for the magnetic properties of TbNi2B2C, and are also possibly relevant also for those of ErNi2B2C.Comment: 4 page

    Reliability Analysis of Uniaxially Ground Brittle Materials

    Get PDF
    The fast fracture strength distribution of uniaxially ground, alpha silicon carbide was investigated as a function of grinding angle relative to the principal stress direction in flexure. Both as-ground and ground/annealed surfaces were investigated. The resulting flexural strength distributions were used to verify reliability models and predict the strength distribution of larger plate specimens tested in biaxial flexure. Complete fractography was done on the specimens. Failures occurred from agglomerates, machining cracks, or hybrid flaws that consisted of a machining crack located at a processing agglomerate. Annealing eliminated failures due to machining damage. Reliability analyses were performed using two and three parameter Weibull and Batdorf methodologies. The Weibull size effect was demonstrated for machining flaws. Mixed mode reliability models reasonably predicted the strength distributions of uniaxial flexure and biaxial plate specimens

    Giant Magnetic Fluctuations at the Critical Endpoint in Insulating HoMnO3

    Get PDF
    Although abundant research has focused recently on the quantum criticality of itinerant magnets, critical phenomena of insulating magnets in the vicinity of critical endpoints (CEP's) have rarely been revealed. Here we observe an emergent CEP at 2.05 T and 2.2 K with a suppressed thermal conductivity and concomitant strong critical fluctuations evident via a divergent magnetic susceptibility (e.g., ????????(2.05 T,2.2 K)/????????(3 T,2.2 K)≈23,500%, comparable to the critical opalescence in water) in the hexagonal insulating antiferromagnet HoMnO3. © 2013 American Physical Society.open1
    corecore