13,292 research outputs found
The merger boom: an overview
Consolidation and merger of corporations ; Corporations ; Public policy
Are hostile takeovers different?
Consolidation and merger of corporations ; Corporations ; Stockholders
The Eighteenth Century
This chapter has four sections: 1. Prose and General; 2. The Novel; 3. Poetry; 4. Drama. Section 1 is by Steven Lynn; section 2 is by Elles Smallegoor; section 3 is by David Shuttleton; section 4 is by Marjean Purinton
A model for projectile fragmentation
A model for projectile fragmentation is developed whose origin can be traced
back to the Bevalac era. The model positions itself between the
phenomenological EPAX parametrization and transport models like "Heavy Ion
Phase Space Exploration" (HIPSE) model and antisymmetrised molecular dynamics
(AMD) model. A very simple impact parameter dependence of input temperature is
incorporated in the model which helps to analyze the more peripheral
collisions. The model is applied to calculate the charge, isotopic
distributions, average number of intermediate mass fragments and the average
size of largest cluster at different Z_{bound} of different projectile
fragmentation reactions at different energies.Comment: Talk given by Gargi Chaudhuri at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. 10 pages, 7 figure
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials
We present the first Green's function Monte Carlo calculations of light
nuclei with nuclear interactions derived from chiral effective field theory up
to next-to-next-to-leading order. Up to this order, the interactions can be
constructed in a local form and are therefore amenable to quantum Monte Carlo
calculations. We demonstrate a systematic improvement with each order for the
binding energies of and systems. We also carry out the first
few-body tests to study perturbative expansions of chiral potentials at
different orders, finding that higher-order corrections are more perturbative
for softer interactions. Our results confirm the necessity of a three-body
force for correct reproduction of experimental binding energies and radii, and
pave the way for studying few- and many-nucleon systems using quantum Monte
Carlo methods with chiral interactions.Comment: 5 pages, 3 figures, 4 tables. Updated references. Cosmetic changes to
figures, tables, and equations; added a sentence clarifying the
correspondence between our real-space cutoffs and momentum-space cutoffs.
Other sentences were reworded for clarit
Signatures of few-body resonances in finite volume
We study systems of bosons and fermions in finite periodic boxes and show how
the existence and properties of few-body resonances can be extracted from
studying the volume dependence of the calculated energy spectra. Using a
plane-wave-based discrete variable representation to conveniently implement
periodic boundary conditions, we establish that avoided level crossings occur
in the spectra of up to four particles and can be linked to the existence of
multi-body resonances. To benchmark our method we use two-body calculations,
where resonance properties can be determined with other methods, as well as a
three-boson model interaction known to generate a three-boson resonance state.
Finding good agreement for these cases, we then predict three-body and
four-body resonances for models using a shifted Gaussian potential. Our results
establish few-body finite-volume calculations as a new tool to study few-body
resonances. In particular, the approach can be used to study few-neutron
systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio
Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?
We present quantum Monte Carlo calculations of few-neutron systems confined
in external potentials based on local chiral interactions at
next-to-next-to-leading order in chiral effective field theory. The energy and
radial densities for these systems are calculated in different external
Woods-Saxon potentials. We assume that their extrapolation to zero
external-potential depth provides a quantitative estimate of three- and
four-neutron resonances. The validity of this assumption is demonstrated by
benchmarking with an exact diagonalization in the two-body case. We find that
the extrapolated trineutron resonance, as well as the energy for shallow well
depths, is lower than the tetraneutron resonance energy. This suggests that a
three-neutron resonance exists below a four-neutron resonance in nature and is
potentially measurable. To confirm that the relative ordering of three- and
four-neutron resonances is not an artifact of the external confinement, we test
that the odd-even staggering in the helium isotopic chain is reproduced within
this approach. Finally, we discuss similarities between our results and
ultracold Fermi gases.Comment: 6 pages, 5 figures, version compatible with published lette
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron- Scattering, and Neutron Matter
We present quantum Monte Carlo calculations of light nuclei, neutron-
scattering, and neutron matter using local two- and three-nucleon ()
interactions derived from chiral effective field theory up to
next-to-next-to-leading order (NLO). The two undetermined low-energy
couplings are fit to the He binding energy and, for the first time, to the
spin-orbit splitting in the neutron- -wave phase shifts.
Furthermore, we investigate different choices of local -operator structures
and find that chiral interactions at NLO are able to simultaneously
reproduce the properties of systems and of neutron matter, in
contrast to commonly used phenomenological interactions.Comment: 5 pages, 3 figures, 1 table - updated version: small wording changes,
one reference chang
- …