We present the first Green's function Monte Carlo calculations of light
nuclei with nuclear interactions derived from chiral effective field theory up
to next-to-next-to-leading order. Up to this order, the interactions can be
constructed in a local form and are therefore amenable to quantum Monte Carlo
calculations. We demonstrate a systematic improvement with each order for the
binding energies of A=3 and A=4 systems. We also carry out the first
few-body tests to study perturbative expansions of chiral potentials at
different orders, finding that higher-order corrections are more perturbative
for softer interactions. Our results confirm the necessity of a three-body
force for correct reproduction of experimental binding energies and radii, and
pave the way for studying few- and many-nucleon systems using quantum Monte
Carlo methods with chiral interactions.Comment: 5 pages, 3 figures, 4 tables. Updated references. Cosmetic changes to
figures, tables, and equations; added a sentence clarifying the
correspondence between our real-space cutoffs and momentum-space cutoffs.
Other sentences were reworded for clarit