253 research outputs found

    Cell death, dendritic cells and downregulation of the immune response

    Get PDF

    Euphonia:reflecting on the design of an AI-powered voice-controlled narrative game

    Get PDF
    This paper reflects on the design process for a work-in-progress AI-powered voice-controlled narrative game created by Innovation for Games and Media Enterprise (InGAME). This paper describes the steps which led to the final design decisions, and how the background research, research questions and initial prototyping may be traced through to the work-in-progress game. The design process is then reviewed for its suitability as a practice-based research and development workflow, before finally suggesting next steps the project will take

    EGL-9 Controls C. elegans Host Defense Specificity through Prolyl Hydroxylation-Dependent and -Independent HIF-1 Pathways

    Get PDF
    Understanding host defense against microbes is key to developing new and more effective therapies for infection and inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host Caenorhabditis elegans and pathogenic bacterium Staphylococcus aureus, we describe an important role for hypoxia-inducible factor (HIF) in defining the specificity of the host response in the intestine. We demonstrate that loss of egl-9, a negative regulator of HIF, confers HIF-dependent enhanced susceptibility to S. aureus while increasing resistance to Pseudomonas aeruginosa. In our attempt to understand how HIF could have these apparently dichotomous roles in host defense, we find that distinct pathways separately regulate two opposing functions of HIF: the canonical pathway is important for blocking expression of a set of HIF-induced defense genes, whereas a less well understood noncanonical pathway appears to be important for allowing the expression of another distinct set of HIF-repressed defense genes. Thus, HIF can function either as a gene-specific inducer or repressor of host defense, providing a molecular mechanism by which HIF can have apparently opposing roles in defense and inflammation. Together, our observations show that HIF can set the balance between alternative pathogen-specific host responses, potentially acting as an evolutionarily conserved specificity switch in the host innate immune response

    An Examination of Factors Influencing Small Proton Chemical Shift Differences in Nitrogen-Substituted Monodeuterated Methyl Groups

    Get PDF
    Monodeuterated methyl groups have previously been demonstrated to provide access to long-lived nuclear spin states. This is possible when the CH2D rotamers have sufficiently different populations and the local environment is chiral, which foments a non-negligible isotropic chemical shift difference between the two CH2D protons. In this article, the focus is on the N-CH2D group of N-CH2D-2-methylpiperidine and other suitable CH2D-piperidine derivatives. We used a combined experimental and computational approach to investigate how rotameric symmetry breaking leads to a 1H CH2D chemical shift difference that can subsequently be tuned by a variety of factors such as temperature, acidity and 2-substituted molecular groups.</jats:p

    Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome

    Get PDF
    Innate immunity is the first-line defense against pathogens and relies on phagocytes, soluble components, and cell-surface and cytosolic pattern recognition receptors. Despite using hard-wired receptors and signaling pathways, the innate immune response demonstrates surprising specificity to different pathogens. We determined how combinatorial use of innate immune defense mechanisms defines the response. We describe a novel cooperation between a soluble component of the innate immune system, the mannose-binding lectin, and Toll-like receptor 2 that both specifies and amplifies the host response to Staphylococcus aureus. Furthermore, we demonstrate that this cooperation occurs within the phagosome, emphasizing the importance of engulfment in providing the appropriate cellular environment to facilitate the synergy between these defense pathways

    Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    Get PDF
    Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and β€œbridging” interactions. β€œBridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of β€œbridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated β€œstealth” vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications

    Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain

    Get PDF
    Phagocyte recognition and clearance of bacteria play essential roles in the host response to infection. In an on-going forward genetic screen, we identify the Drosophila melanogaster scavenger receptor Croquemort as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria. In transfection assays, the mammalian Croquemort paralogue CD36 confers binding and internalization of Gram-positive and, to a lesser extent, Gram-negative bacteria. By mutational analysis, we show that internalization of S. aureus and its component lipoteichoic acid requires the COOH-terminal cytoplasmic portion of CD36, specifically Y463 and C464, which activates Toll-like receptor (TLR) 2/6 signaling. Macrophages lacking CD36 demonstrate reduced internalization of S. aureus and its component lipoteichoic acid, accompanied by a marked defect in tumor necrosis factor-Ξ± and IL-12 production. As a result, Cd36βˆ’/βˆ’ mice fail to efficiently clear S. aureus in vivo resulting in profound bacteraemia. Thus, response to S. aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain, which initiates TLR2/6 signaling

    Biodistribution and inflammatory profiles of novel penton and hexon double-mutant serotype 5 adenoviruses

    Get PDF
    The use of adenovirus serotype 5 (Ad5) vectors in the clinical setting is severely hampered by the profound liver tropism observed after intravascular delivery coupled with the pronounced inflammatory and innate immune response elicited by these vectors. Liver transduction by circulating Ad5 virions is mediated by a high-affinity interaction between the capsid hexon protein and blood coagulation factor X (FX), whilst penton-Ξ±(v)integrin interactions are thought to contribute to the induction of anti-Ad5 inflammatory and innate immune responses. To overcome these limitations, we sought to develop and characterise for the first time novel Ad5 vectors possessing mutations ablating both hexon:FX and penton:integrin interactions. As expected, intravascular administration of the FX binding-ablated Ad5HVR5*HVR7*E451Q vector (AdT*) resulted in significantly reduced liver transduction in vivo compared to Ad5. In macrophage-depleted mice, increased spleen uptake of AdT* was accompanied by an elevation in the levels of several inflammatory mediators. However ablation of the penton RGD motif in the AdT* vector background (AdT*RGE) resulted in a significant 5-fold reduction in spleen uptake and attenuated the antiviral inflammatory response. A reduction in spleen uptake and inflammatory activation was also observed in animals after intravascular administration of Ad5RGE compared to the parental Ad5 vector, with reduced co-localisation of the viral beta-galactosidase transgene with MAdCAM-1+ sinus-lining endothelial cells. Our detailed assessment of these novel adenoviruses indicates that penton base RGE mutation in combination with FX binding-ablation may be a viable strategy to attenuate the undesired liver uptake and pro-inflammatory responses to Ad5 vectors after intravascular deliver

    Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

    Get PDF
    Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates a number of functions of these organelles that allow them to participate in processes essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3-inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3-inflammasome and caspase-1 in host defense

    Research on HIV cure: Mapping the ethics landscape

    Get PDF
    According to current estimates, 36.7 million people are infected with HIV worldwide. Despite large-scale and growing programs to prevent and treat HIV infection, possible approaches to achieve a cure for HIV infection are of strong interest. In the development of candidate approaches to achieve an HIV cure, issues of future translation to human study participants, evidence-based practice, clinical care, diverse populations, and populations in low- and middle-income countries should all be considered. An HIV cure should be effective, safe, simple, affordable, and scalable. Acceptability research is a critical adjunct to ongoing biomedical HIV cure research efforts. Anticipating some of the ethical and implementation challenges related to HIV cure strategies is necessary before the availability of effective interventions. Ongoing engagement of stakeholders is needed to resolve ethical, logistical, social, cultural, policy, regulatory, and implementation challenges at all stages of the HIV cure research development process
    • …
    corecore