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Abstract

Understanding host defense against microbes is key to developing new and more effective therapies for infection and
inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different
pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host
Caenorhabditis elegans and pathogenic bacterium Staphylococcus aureus, we describe an important role for hypoxia-
inducible factor (HIF) in defining the specificity of the host response in the intestine. We demonstrate that loss of egl-9,
a negative regulator of HIF, confers HIF-dependent enhanced susceptibility to S. aureus while increasing resistance to
Pseudomonas aeruginosa. In our attempt to understand how HIF could have these apparently dichotomous roles in host
defense, we find that distinct pathways separately regulate two opposing functions of HIF: the canonical pathway is
important for blocking expression of a set of HIF-induced defense genes, whereas a less well understood noncanonical
pathway appears to be important for allowing the expression of another distinct set of HIF-repressed defense genes. Thus,
HIF can function either as a gene-specific inducer or repressor of host defense, providing a molecular mechanism by which
HIF can have apparently opposing roles in defense and inflammation. Together, our observations show that HIF can set the
balance between alternative pathogen-specific host responses, potentially acting as an evolutionarily conserved specificity
switch in the host innate immune response.
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Introduction

In mammalian host defense against infection, discrimination of

distinct microbes is thought to occur primarily by differential

ligation of Pattern Recognition Receptors (PRRs), such as Toll-like

Receptor (TLR) heterodimers, followed by activation of down-

stream kinase cascades that control NF-kB and AP1 family

transcription factors [1]. These transcription factors control the

expression of pathogen-specific transcriptional programs of host

defense genes [2].

TLR pathways are highly conserved, indicating that they arose

early during evolution [3]. Despite this, they are not required for

host defense in all multicellular animals, suggesting that other

undefined modes of host defense exist [4]. This is the case of

nematodes such as Caenorhabditis elegans, in which the sole TLR,

TOL-1, plays a limited role in host defense against infection [5–7],

and elements of known TLR pathways, including MyD88 and NF-

kB itself, are absent [4,8]. However, C. elegans detects bacterial

infection and elicits pathogen-specific host defense responses [5,9].

A few signaling pathways necessary for C. elegans host defense have

been partially elucidated, including extracellular signal regulated

kinase (ERK) [10], p38 mitogen-activated protein kinase (MAPK)

[11], transforming-growth factor b (TGF-b) [6], and b-catenin

[12] pathways, but their molecular mechanisms of signal trans-

duction and interactions with other cellular pathways remain

largely unknown. Most importantly, absent clear mechanisms for

bacterial detection, how C. elegans discriminates between distinct

pathogens to produce pathogen-tailored responses is not un-

derstood.

Hypoxia-inducible factor (HIF) is a highly conserved hetero-

dimeric transcription factor, which is composed of a and b subunits

(HIF-1 and AHA-1 in C. elegans, respectively) and is best known to

mediate cellular responses to low oxygen concentrations, by

activating hundreds of genes involved in metabolism, cell division,

angiogenesis, iron homeostasis, and apoptosis [13,14]. As in all

species tested so far, an important mechanism of control of C.

elegans HIF activity is by rapid turnover of the HIF-1 subunit,

modulated by canonical hypoxia signaling [13]. Under normal O2

levels, HIF-1 is hydroxylated by the prolyl hydroxylase (PHD)

EGL-9, which converts HIF-1 to a ligand for von Hippel Lindau
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protein (VHL-1). VHL-1 binding leads to HIF-1 ubiquitination

and degradation by the proteasome [15–17]. When O2 is scarce,

PHD activity diminishes and HIF-1 is stabilized, allowing HIF-1

accumulation, nuclear translocation, recruitment to target pro-

moters by AHA-1, and target gene expression. Additionally, EGL-

9 represses HIF by a noncanonical pathway that is independent of

EGL-9 PHD activity and of VHL-1, but that requires the protein

scaffold SWAN-1 [18,19]. Therefore, EGL-9 has at least two

divergent functions that converge on HIF.

Recently, HIF was also implicated in host defense in mammals

and nematodes. Human HIF is activated during infection by

bacteria and viruses, and during chronic inflammation [20].

Furthermore, murine and human HIF regulate the expression of

inflammatory genes. For instance, HIF is essential in phagocytes

for the induction of antimicrobial responses and for prevention of

systemic infection, suggesting that HIF has pro-inflammatory roles

[21]. Similarly, C. elegans HIF promotes host defense against

Pseudomonas aeruginosa [18,22], a Gram-negative pathogen of great

clinical importance, and against pore-forming toxins from Bacillus

thuringiensis and Vibrio cholerae [22], implying that HIF drives the

expression of host defense genes that enhance host survival of

infection.

In contrast, HIF deletion increases inflammation in mouse

models of intestinal inflammation and of infection by C. difficile,

suggesting that HIF may also have anti-inflammatory roles

[23,24]. The molecular basis for these opposing effects of HIF

on host defense and inflammation is not well understood.

Similar to P. aeruginosa, the Gram-positive pathogen Staphylococ-

cus aureus infects the intestine and kills C. elegans [25]. Furthermore,

similar to B. thuringiensis and V. cholerae, S. aureus is known to deploy

pore-forming toxins as virulence factors [26]. For these reasons, we

hypothesized that hypoxia signaling might play a role in defense

against S. aureus. Unexpectedly, we found that deletion of egl-9

conferred enhanced susceptibility to S. aureus-mediated killing,

which was dependent on hif-1. Mechanistically, this effect

appeared to be the result of HIF-1-mediated defense gene

repression, suggesting that HIF can function both as an inducer

and a repressor of distinct sets of host defense genes. Furthermore,

canonical hypoxia signaling appeared to be specialized for

controlling gene activation by HIF, whereas noncanonical

signaling appeared specifically to control gene repression by

HIF. These observations provide a rationale for the existence of

two parallel HIF-controlling pathways divergent from EGL-9, and

identify HIF as an important factor that can modulate the balance

between pathogen-specific host responses.

Results

egl-9/PHD is required for host defense against S. aureus
To evaluate whether HIF-1 is involved in host defense against S.

aureus, we infected wild type C. elegans and mutants defective in

hypoxia signaling, and followed survival over time. Deletion of egl-

9 in egl-9(sa307) mutants causes HIF-1 accumulation and

constitutive activation [17]. Surprisingly, egl-9(sa307) mutants

exhibited enhanced susceptibility to S. aureus-mediated killing,

compared with wild type (Figure 1A). Simultaneous deletion of

hif-1 suppressed this effect (Figure 1A). In contrast, inactivation of

hif-1 did not substantially alter susceptibility (Figure 1A), in-

dicating that although hyperactivation of HIF-1 by deletion of egl-

9 is deleterious for C. elegans defense against S. aureus, loss of HIF-1

is not sufficient to confer resistance. The susceptibility of egl-

9(sa307) animals is likely not due to non-specific lack of viability,

since uninfected egl-9(sa307) mutants are long lived [18,27,28] and

resistant to a number of abiotic stresses [22].

One mechanism by which EGL-9 represses HIF-1 requires

VHL-1, so we examined the susceptibility of vhl-1(ok161) mutants to

S. aureus. Inactivation of vhl-1 did not alter susceptibility

(Figure 1B), indicating that VHL-1-independent EGL-9 regulation

of HIF-1 (a ‘‘noncanonical’’ pathway) is required for host defense.

To confirm our unexpected findings, we evaluated additional

alleles of egl-9, which differ in their predicted protein products.

The egl-9 gene comprises eleven exons that are alternatively

spliced to produce five different proteins that differ in their domain

composition (EGL-9a–e, Figure 2A,B) [19]. egl-9(sa330) and egl-

9(ok478) mutants respectively produce either full-length EGL-9c

and EGL-9e (containing the C-terminal prolyl hydroxylase, or

PHD, domain but not the N-terminal myeloid translocation

protein 8, Nervy, and DEAF-1, or MYND, domain) or only

truncated fragments (containing the MYND domain but not the

PHD domain, Figure 2B). These mutants exhibited wild type

susceptibility to S. aureus (Figure 1C,D), indicating that the

MYND and PHD domains are dispensable for host defense.

Additionally, egl-9(ok478) animals exhibit an egg-laying (Egl) defect

[19], but not enhanced susceptibility to S. aureus, showing that the

enhanced susceptibility and Egl phenotypes are separable.

In contrast, egl-9(n586ts) mutants exhibited enhanced suscepti-

bility to S. aureus (Figure 1E). These animals are predicted to

produce full-length EGL-9c, which contains only the PHD

domain, and truncated fragments that contain only the MYND

domain (Figure 2B). This observation supports the notion that

the MYND and PHD domains are not sufficient for host defense.

Collectively, these results suggest that exons 3 and 4 of egl-9, which

contain a serine-rich region, are important determinants of

susceptibility to S. aureus (Figure 2B). By this model, sa307,

which generates a premature stop codon just upstream of the PHD

domain (Figure 2A,B), would not be expected to exhibit

enhanced susceptibility; although our results appear to contradict

the proposed model, it is possible that the translation of egl-

9(sa307) transcripts results in misfolded or otherwise inhibited

EGL-9 fragments. For subsequent studies we continued to use egl-

9(sa307), since it is the most widely used allele.

Author Summary

Understanding how animals detect infection and mount
appropriate responses is key to treating infection and
inflammatory disease. We use the tractable model
Caenorhabditis elegans to study mechanisms of host
defense against pathogenic bacteria. Here we show that
hypoxia-inducible factor (HIF) is important for ensuring
that the intestinal host response to infection has the
appropriate specificity. HIF acts as an inducer and a re-
pressor of host genes in the intestine, and regulation of
these opposing activities is genetically separable. One
well-understood regulatory pathway requires EGL-9 and
VHL-1, negative regulators of HIF, to prevent constitutive
expression of host defense genes. Noncanonical pathways
are less understood; a recently identified noncanonical
pathway requires EGL-9 and SWAN-1. This pathway
appears to be more important for lifting the repression
of defense genes by HIF-1. Mutants defective in EGL-9 are
more susceptible to S. aureus but more resistant to the
distinct pathogen P. aeruginosa, indicating that the de-
fense role of HIF-1 is pathogen-specific. These studies are
relevant to mammalian defense because mutations in hif-
1, egl-9, and vhl-1 homologs in mice have similar effects on
intestinal inflammation as in worms, and provide a frame-
work to further explore the role of noncanonical HIF
signaling in human infection and inflammatory disease.

EGL-9 Regulates Host Defense Specificity

PLoS Pathogens | www.plospathogens.org 2 July 2012 | Volume 8 | Issue 7 | e1002798



S. aureus infects C. elegans through the intestine, where it causes

intestinal epithelial cell pathology and lysis, before causing internal

organ lysis and nematode death [5]. Intestinal epithelial cells

represent the major site of host defense in this system [5]. We

therefore tested whether exclusive intestinal epithelial cell expres-

sion of egl-9 could rescue the susceptibility phenotype of egl-

9(sa307) mutants. While epidermal, muscle, or neuronal expres-

sion of egl-9 had no effect (Figure S1), intestinal expression of egl-9

partially rescued the susceptibility phenotype of egl-9(sa307)

(Figure 1F). Taken together, our results thus far suggested that

EGL-9 is required in intestinal epithelial cells to suppress HIF-1-

mediated enhanced susceptibility to S. aureus by a vhl-1-in-

dependent, or noncanonical, pathway.

hif-1/HIF-1a is dispensable for host defense gene
induction

How does HIF-1 mediate susceptibility to S. aureus, and how

does EGL-9 suppress that susceptibility? Infection by S. aureus

triggers a pathogen-specific transcriptional response in C. elegans,

which enhances host survival [5]. As mentioned, HIF is

a heterodimeric transcription factor, composed in C. elegans of

HIF-1 (HIFa) and AHA-1 (HIFb). Because loss of egl-9 caused

enhanced susceptibility to S. aureus in a HIF-1-dependent manner,

we hypothesized that HIF-1 may regulate the transcriptional host

response to infection.

To determine the role of HIF-1 in defense gene regulation, we

performed qRT-PCR to measure expression of 17 S. aureus-

induced genes in infected and uninfected wild type and hif-1

animals. These genes include putative antimicrobials and were

selected as markers of the wider host response [5]. C. elegans is

a natural bacterivore, which is reared in the laboratory by feeding

on nonpathogenic Escherichia coli isolate OP50. For our transcrip-

tion profiling experiments, E. coli OP50-fed uninfected animals

represent the basal, or reference, state. Overall, we did not observe

major differences in gene expression between wild type and hif-1

animals, although oac-31 and clec-60 were more highly expressed in

uninfected and infected hif-1 animals, respectively, and lys-5 was

Figure 1. egl-9 inactivation causes enhanced susceptibility to S. aureus-mediated killing. A. egl-9(sa307) animals exhibited enhanced
susceptibility, whereas egl-9(sa307);hif-1(ia4) mutants exhibited near wild-type susceptibility. Survival analysis: egl-9 Kaplan-Meier Median Survival
(MS) = 62 h, Time to 50% Death by nonlinear regression analysis (LT50) = 48.78 h, Number of animals (N) = 142, p,0.0001 (Log-Rank test, compared
with wild type); egl-9;hif-1 MS = 68 h, LT50 = 62.10 h, N = 122/2, p = 0.0030 (compared with wild type). B. vhl-1(ok161) and hif-1(ia4) animals exhibited
near wild-type susceptibility. Survival analysis: wild type MS = 74 h, LT50 = 67.03 h, N = 117/5; vhl-1 MS = 62 h, LT50 = 61.86 h, N = 118, p,0.0001
(compared with wild type); hif-1 MS = 74 h, LT50 = 64.77 h, N = 136, p = 0.0943 (compared with wild type). C. egl-9(sa330) animals and D. egl-9(ok478)
animals exhibit wild type susceptibility. E. egl-9(n586ts) animals are hypersusceptible to S. aureus. Survival analysis: egl-9(sa307) MS = 43 h, N = 95/1,
p,0.0001 (compared with wild type); egl-9;(n586ts) MS = 43 h, N = 96/15, p,0.0001 (compared with wild type); wild type MS = 50 h, N = 92/9. As all
killing assays, this assay was performed at 25uC, which is the restrictive temperature of n586ts. F. Wild type, egl-9(sa307);crp-1::egl-9 (Intestinal egl-9),
and egl-9(sa307);crp-1::gfp (Intestinal gfp) animals show that intestinal expression of EGL-9, but not GFP, rescues the egl-9(sa307) enhanced
susceptibility phenotype. Survival analysis: wild type MS = 70 h, N = 108/7; Intestinal egl-9 MS = 61 h, N = 115/14, p,0.0001 (compared with wild type),
p,0.0001 (compared with Intestinal gfp); Intestinal gfp MS = 48 h, N = 102/3, p,0.0001 (compared with wild type). Results are representative of two
independent trials, performed in triplicate. Animals were subjected to cdc-25 RNAi to prevent reproduction, and subsequently transferred to S. aureus
killing assay plates.
doi:10.1371/journal.ppat.1002798.g001

EGL-9 Regulates Host Defense Specificity
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less expressed in both infected and uninfected hif-1 animals

(Figure S2A).

Next, we evaluated the induction of the selected marker genes

during infection, by comparing infected animals to uninfected

controls. As previously shown [5], the marker genes showed a range

of induction from 2-fold to 1000-fold in wild type animals (Figure
S2B). Compared with wild type, hif-1 mutants displayed similar

levels of gene induction, except in the cases of oac-31, which trended

towards lower induction, and lys-5, cyp-34A4, and Y65B4BR.1,

which trended towards higher levels of induction (Figure S2B).

Therefore, hif-1 is dispensable for the induction of S. aureus host

response genes, which is consistent with the wild type susceptibility

of hif-1 mutants (Figure 1A). The lack of effect of hif-1 mutation on

survival and defense gene expression was not due to hif-1 gene

repression during infection, because hif-1 was equally expressed in

infected and uninfected wild type animals (Figure S2C).

Figure 2. egl-9 allelic series informs on molecular biology of EGL-9. A. egl-9 gene models extracted from the C. elegans genome database
(WormBase, www.wormbase.org), indicating exon number and location of mutations. B. Predicted protein products from each splice isoform,
indicating conserved domains and region determined to be required for wild type susceptibility to S. aureus, and summary of phenotypes for each
allele, describing predicted protein products in each case. S. aureus phenotype as presented in the main text. P. aeruginosa phenotype refers to
cyanide-mediated killing by P. aeruginosa strain PAO1 [18,32].
doi:10.1371/journal.ppat.1002798.g002

EGL-9 Regulates Host Defense Specificity
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Activated HIF-1 causes both host defense gene
overexpression and repression

As we have shown, lack of egl-9 confers enhanced susceptibility

to S. aureus via hif-1 (Figure 1A). We envisioned two possibilities:

a) hyperactive HIF-1 might cause pathologically high levels of host

gene expression during infection, causing enhanced susceptibility

due to self-damage, and b) hyperactive HIF-1 might repress the

host response, causing enhanced susceptibility due to deficient host

defense. To discriminate between these scenarios, we measured

marker gene expression by qRT-PCR in uninfected (Figure 3A–
C) and infected (Figure 3G–L) egl-9 and egl-9;hif-1 double

mutants relative to wild type controls. According to their

expression during infection, we found three subsets of genes: 1)
genes whose expression was increased in egl-9 mutants, including

C-type lectin genes clec-60, clec-52, and clec-71 (‘‘egl-9-repressed

genes’’, Figure 3A, G), 2) genes whose expression did not change,

such as flavin-containing mono-oxygenase fmo-2 and putative

antimicrobial peptide F53A9.8 (‘‘egl-9-independent genes’’,

Figure 3B, H), and 3) genes whose expression was reduced,

including antimicrobials such as lysozymes (ilys-3 and lys-5) and

secreted phospholipase Y65B4BR.1 (‘‘egl-9-induced genes’’,

Figure 3C, I). Many of these expression changes also occurred

in uninfected animals (Figure 3 A–C), indicating that basal

expression could also be altered by egl-9 mutation, independently

of infection. The majority of gene expression changes were hif-1-

dependent (except for oac-31, cpr-2, ins-11, and lys-5 in uninfected

animals), implicating HIF-1 as both activator and repressor of the

intestinal host response to infection (Figure 3A–C, G–I).

Collectively, these results show that egl-9 inactivation causes hif-

1-dependent up- and down-regulation of distinct sets of host

defense genes in both uninfected and infected states.

EGL-9 blocks HIF-1 by a canonical pathway that involves

VHL-1-dependent ubiquitination and subsequent degradation

[19]. To test whether inactivation of the canonical pathway is

sufficient for the gene expression changes observed in egl-9

mutants, we measured gene expression in vhl-1 and vhl-1;hif-1

animals relative to wild type. Interestingly, mutation of vhl-1

caused significant upregulation of two out of three egl-9-repressed

genes (clec-60 and clec-52, with an additional four genes trending

higher than wild type in uninfected animals, and two in infected

animals). These changes were also HIF-1-dependent (except for

oac-31, Figure 3D, J). Similarly, egl-9-independent genes were

mostly unchanged in vhl-1 mutants (except for fmo-2 in uninfected

animals and ins-11 in infected animals, Figure 3E, K). In

contrast, most egl-9-induced genes remained unchanged in vhl-1

mutants (except for ilys-3 and cyp-34A4, Figure 3F, L). Thus, vhl-1

inactivation appeared to cause similar gene upregulation as egl-9,

but not to cause repression of egl-9-induced genes. This result

implies that VHL-1-mediated canonical signaling is important for

preventing HIF-1-induced gene activation, but not HIF-1-

mediated gene repression.

Mutations in egl-9 or vhl-1 could lead to increased expression of

defense genes in intestinal cells, or alternatively could lead to

ectopic expression in additional tissues. To better understand the

locus of defense gene overexpression, we used animals expressing

GFP driven by the clec-60 promoter [12]. We observed pro-

gressively higher expression in the intestinal epithelial cells of wild

type, hif-1, egl-9, and vhl-1 animals, as predicted by qRT-PCR

(Figure 3A,D, 4, S3). In uninfected egl-9 and vhl-1 animals, we

also observed very low ectopic expression in the excretory cell,

visible after long exposure (Figure S4). These results suggest that

defense gene overexpression in egl-9 and vhl-1 mutants occurs

largely in the intestinal epithelium, rather than ectopically in other

tissues.

To verify the repression of ilys-3 in egl-9 mutants, we used

animals carrying ilys-3 promoter-driven GFP. This construct was

highly expressed in intestinal epithelial cells of infected wild type

animals, but not in infected egl-9 animals, as predicted by qRT-

PCR (Figure 3I, 4E,F), confirming that ilys-3 induction in the

intestine requires egl-9 function.

To further test our conclusion that canonical HIF-1 regulation

is important to prevent defense gene overexpression, we evaluated

gene expression in transgenic hif-1 animals overexpressing either

wild type HIF-1 or a mutant HIF-1 allele (hif-1P621G) in which

proline 621 is mutated to glycine, abrogating EGL-9-mediated

prolyl hydroxylation [17,19]. In animals expressing hif-1P621G,

canonical EGL-9 regulation of HIF-1 is disrupted (causing HIF-1

accumulation) but noncanonical HIF-1 regulation is presumably

functional. Thus, we would expect the expression profile of

animals expressing hif-1P621G to be different from that of animals

expressing wild type hif-1, and similar to that of vhl-1 mutants.

Relative to infected wild type animals, overexpression of wild

type HIF-1 in infected animals caused significant repression of oac-

31, C23G10.11, and tre-5, and an overall trend towards repression

of both egl-9-repressed and -induced genes (10 out of 18 genes,

Figure 5A), suggesting that overexpression of HIF-1 is sufficient

to cause gene expression changes. On the other hand, over-

expression of HIF-1P621G caused significantly higher expression

only of clec-60 (similar to vhl-1 mutants). Although the results did

not exactly mirror those obtained for vhl-1 mutants (Figure 3J–L),

we observed a trend towards increased expression of a subset of

genes, including exc-5, clec-52, fmo-2, clh-1, tre-5, and cyp-34A4

(Figure 5A), as well as significant repression of C23G10.11, similar

to vhl-1 mutants (Figure 3J–L). These results support the notion

that canonical EGL-9 signaling, acting through HIF-1 hydroxyl-

ation and VHL-1-mediated degradation, blocks HIF-mediated

defense gene activation.

A noncanonical pathway inhibits HIF-1-mediated defense
gene repression

Recently, a noncanonical pathway of HIF-1 inhibition by EGL-

9 was described in C. elegans [19]. This noncanonical pathway,

postulated to act within the nucleus [19], does not require EGL-9

catalytic activity and operates independently of VHL-1. Instead,

the described noncanonical HIF inhibition depends on scaffold

protein SWAN-1 [18] (known as SWAN-1/DCAF7/HAN11/

WDR68 in mammals). swan-1 mutation synergizes with loss of vhl-

1 and leads to higher HIF-1 activity than in vhl-1 single mutants.

However, swan-1 mutation alone does not cause HIF-1 accumu-

lation, suggesting a model whereby SWAN-1 influences HIF-1

transcriptional activity [18]. Based on the fact that genes

Y65B4BR.1, lys-5, C54F6.5, and cyp-34A4 were repressed in egl-9

but not in vhl-1 mutants (Figure 3I,L), we hypothesized that

noncanonical HIF-1 control was important for regulating egl-9-

induced (hif-1-repressed) defense genes. To test the hypothesis that

SWAN-1, which is involved in noncanonical HIF control, plays

a role in lifting HIF-1-mediated gene repression, we evaluated

gene expression in infected swan-1 animals compared with wild

type. Loss of swan-1 caused minor differences in gene expression

relative to wild type, with an overall trend towards repression

(Figure 5B). This result suggested that, although noncanonical

signaling is important for lifting host defense gene repression by

HIF-1, SWAN-1 plays a limited role in the regulation of the small

set of genes we evaluated.

Next, we combined swan-1 and hif-1P621G mutations to perturb

both known pathways of HIF inhibition and test the extent to

which the double mutants phenocopy the gene expression profile

of egl-9 mutants. Infected swan-1;hif-1P621G double mutants

EGL-9 Regulates Host Defense Specificity
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exhibited complex gene expression profiles compared with swan-1

and egl-9 single mutants. The expression of a subset of genes was

intermediate between swan-1 and egl-9 mutants, suggesting a trend

towards the egl-9 profile by impairment of canonical signaling in

swan-1 mutants (Figure 5C). However, a second subset of genes

were not intermediate (e.g. lys-5 and cpr-2, Figure 5D). Similar

effects were observed in uninfected animals (Figure S5). Thus,

combination of swan-1 and hif-1P621G mutations was not sufficient

to generate an expression profile similar to egl-9 mutants,

suggesting that stabilization of HIF-1 and loss of swan-1 are

insufficient to phenocopy mutation of egl-9. Presumably, additional

pathway components function downstream of EGL-9 for non-

canonical control of HIF-1-mediated repression of defense genes.

Because the observed defense gene repression in swan-1 mutants

was relatively small compared with egl-9 animals, we sought to

independently evaluate the biological relevance of the known

noncanonical pathway, dependent on swan-1, to host defense

against S. aureus. We found that mutation of swan-1 was sufficient

to confer enhanced susceptibility (Figure 5E). The magnitude of

the effect was less than that seen in egl-9 mutants, which is

Figure 3. egl-9 is required to lift repression of host defense genes by hif-1. A, B, C. egl-9(sa307) and egl-9(sa307);hif-1(ia4) animals were fed
heat-killed non-pathogenic E. coli for 8 h and gene expression, measured by qRT-PCR, was normalized to parallel wild type controls. Genes were
divided into three groups, according to their expression in infected egl-9 animals (see G, H, I): A. egl-9-repressed genes, B. egl-9-independent genes,
and C. egl-9-induced genes. D, E, F. vhl-1(ok161) and vhl-1(ok161);hif-1(ia4) animals were fed heat-killed non-pathogenic E. coli and gene expression
was normalized to wild type. Genes were grouped as in A, B, C. G, H, I. egl-9(sa307) and egl-9(sa307);hif-1(ia4) animals were infected with S. aureus for
8 h and gene expression, measured by qRT-PCR, was normalized to wild type. Genes are divided into three groups: G. egl-9-repressed genes, H. egl-9-
independent genes, and I. egl-9-induced genes. J, K, L. vhl-1(ok161) and vhl-1(ok161);hif-1(ia4) animals were infected and gene expression was
normalized to wild type. Genes are grouped as in G, H, I. Data are means of 2–5 independent biological replicates, error bars are SEM. *, p#0.05
(compared with wild type by two-sample t test).
doi:10.1371/journal.ppat.1002798.g003

Figure 4. vhl-1 and egl-9 affect defense gene expression in the intestinal epithelium. A, B, C, D. clec-60::gfp expression in uninfected wild
type (A), hif-1(ia4) (B), vhl-1(ok161) (C), and egl-9(sa307) (D) animals. Note increased GFP intensity and number of intestinal cells expressing GFP in vhl-
1 and egl-9 animals. Results are quantified and compared in Figure S3. E, F. ilys-3::gfp expression in wild type (E) and egl-9(sa307) (F) animals infected
with S. aureus for 24 h. Note decreased intensity and intestinal domain of GFP expression in egl-9 animals. Red, Pmyo-2::mCherry co-injection marker
expressed in the pharynx.
doi:10.1371/journal.ppat.1002798.g004
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Figure 5. Noncanonical signaling contributes to lifting hif-1-mediated repression of the host defense response. A. hif-1 animals
overexpressing wild type HIF-1 (hif-1;[hif-1]) or non-hydroxylatable HIF-1 (hif-1;[hif-1P621G]) were infected with S. aureus for 8 h and gene expression,
measured by qRT-PCR, was normalized to wild type. Data are means of 2 independent biological replicates, error bars are SEM. *, p#0.05 (compared
with wild type by two-sample t test); {, p#0.05 (compared hif-1;[hif-1] with hif-1;[hif-1P621G] by two-sample t test). B. swan-1(ok267) mutants were
infected with S. aureus for 8 h and gene expression, measured by qRT-PCR, was normalized to wild type. egl-9(sa307) data from Figure 3 are included
for comparison. Results are means of 3–5 independent biological replicates, error bars are SEM. *, p#0.05 (compared with wild type by two-sample t
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consistent with the smaller effect of swan-1 on gene expression

(Figure 5B). This result suggests that, despite having a minor role

in the expression of the small set of genes we tested, swan-1 has an

important role in host defense.

To better detect large-scale trends across our different experi-

ments, we performed non-hierarchical unsupervised clustering of

the relative expression of EGL-9-repressed and EGL-9-induced

genes, in hif-1, egl-9, vhl-1, swan-1, and swan-1;hif-1P621G mutants, as

well as hif-1 animals overexpressing wild type hif-1 or hif-1P621G

(Figure 6A, B). According to EGL-9-repressed gene expression,

vhl-1, egl-9, and hif-1P621G mutants clustered together, supporting

our previous conclusion that canonical signaling represses HIF-1-

mediated defense gene induction (Figure 6A). In contrast,

according to EGL-9-induced gene expression, egl-9 animals

clustered together with hif-1;[hif-1] animals, and vhl-1 animals

clustered with hif-1;[hif-1P621G] animals. swan-1 animals were an

outgroup (Figure 6B). However, if Y65B4BR.1 (whose expression

in swan-1 mutants is very different from egl-9 mutants, and thus may

be an outlier) was excluded, swan-1 mutants clustered with egl-9, hif-

1;[hif-1], and swan-1;hif-1P621G mutants (Figure S6). These results

support our conclusions that the expression profiles of egl-9-

repressed genes in vhl-1 and egl-9 mutants are similar, while those

of egl-9-induced genes in egl-9 and swan-1 are similar.

Repression of egl-9-induced genes causes enhanced
susceptibility

One model to explain our results is that loss of egl-9 causes

enhanced susceptibility to S. aureus because it leads to HIF-1-

mediated repression of genes that are important for host defense.

To test this model, we performed simultaneous RNAi-mediated

knockdown of the three most highly repressed genes in egl-9

mutants, namely ilys-3, Y65B4BR.1, and lys-5 (see Figure 3I),

which when knocked down individually did not lead to enhanced

susceptibility [5]. The triple knockdown was sufficient to confer

enhanced susceptibility to S. aureus (Figure 5E), essentially

recapitulating the susceptibility phenotype of egl-9 and swan-1

mutants. This result therefore supports the notion that repression

of host defense genes in egl-9 mutants is sufficient to cause

enhanced susceptibility.

Discussion

Based on the unexpected result that loss of the prolyl

hydroxylase egl-9 causes enhanced susceptibility to S. aureus but

enhanced resistance to P. aeruginosa, we have found a novel role for

HIF in host defense. We find that HIF can modulate the specificity

of pathogen-triggered host responses, through activation and

repression of host defense gene expression. Most importantly, our

results provide a rationale for the existence of both canonical and

noncanonical pathways for HIF regulation, which possess distinct

biologically significant roles in host defense.

HIF is well known to act as an inducer of hypoxia response

genes in many organisms, including C. elegans. In contrast, the gene

repressive activity of HIF is less well understood. In support of our

findings of HIF as a repressor of specific defense genes, two recent

studies show that C. elegans HIF represses the ferritin-encoding

genes ftn-1 and ftn-2 during iron starvation [29,30].

Both inductive and repressive HIF activities are regulated by

EGL-9. Previous studies identified two pathways by which EGL-9

controls HIF, an oxygen-sensitive canonical pathway dependent

on EGL-9 catalytic activity and VHL-1 [17], and a noncanonical

pathway that partially requires scaffold protein SWAN-1 [18].

However, why EGL-9 would regulate HIF via two parallel

pathways remained unclear. We favor a model in which, for

a given set of S. aureus-induced genes, HIF-1-mediated gene

activation is blocked by canonical signaling, while HIF-1-mediated

gene repression is lifted by EGL-9 via a poorly understood

noncanonical pathway that involves SWAN-1 and additional

unknown components (Figure 7A). Therefore, EGL-9 may

represent an important node of host defense modulation, acting

to bias host defense gene expression programs in response to

contextual cues, such as oxygen or iron availability.

In animals lacking either EGL-9 or VHL-1, HIF-1 enhances the

expression of a set of S. aureus-induced genes (Figure 7B). In egl-9

mutants, this enhanced expression is offset by concomitant

reduced expression of a distinct set of defense genes (resulting in

a net susceptibility phenotype), whereas in vhl-1 mutants it is not.

Despite this enhanced expression of host defense genes, vhl-1

mutants are not more resistant to S. aureus than wild type animals.

One possible explanation for the lack of effect on host survival in

vhl-1 mutants is that their defense gene overexpression is not large

enough to confer resistance. Alternatively, it is possible that

additional host defense genes not tested here are concomitantly

downregulated in vhl-1 mutants, producing no net difference in

host survival. It is also possible that vhl-1 mutation has hif-1-

independent deleterious effects on viability that mask the beneficial

effect of defense gene overexpression. As evidence for this, vhl-

1;hif-1 double mutants (which no longer overexpress host defense

genes) exhibit a small but discernible enhancement of susceptibility

to S. aureus. In contrast to these observations, loss of vhl-1 confers

enhanced susceptibility to P. aeruginosa cyanide-mediated killing

[18].

Despite also causing constitutive overexpression of a set of host

defense genes, egl-9 inactivation conferred hypersusceptibility to S.

aureus, likely as a result of the repression of important host defense

genes. In support of this view, swan-1 mutants exhibit an overall

trend of defense gene repression, as well as increased susceptibility

to S. aureus (Figure 7B). In contrast, swan-1 mutants exhibit wild-

type susceptibility to P. aeruginosa [18]. During S. aureus infection,

the effect of swan-1 mutation on gene expression and susceptibility

is much smaller than that of egl-9 mutation, suggesting that

noncanonical HIF-1 repression may remain partially functional in

swan-1 mutants. Each downregulated defense gene likely con-

tributes incrementally to enhanced susceptibility, as triple knock-

down of ilys-3, Y65B4BR.1, and lys-5 conferred hypersusceptibility

to S. aureus, whereas none did so when inhibited individually [5].

The net effect is that egl-9 mutants display enhanced susceptibility

to S. aureus.

Our proposed model provides a rationale for the existence of

two distinct pathways for HIF-1 inhibition, both of which require

test). C. Genes whose expression levels were intermediate in swan-1; [hif-1P621G] animals compared with swan-1 and egl-9 animals. swan-1 animals
overexpressing non-hydroxylatable HIF-1 (swan-1;hif-1P621G) were infected with S. aureus for 8 h and gene expression, measured by qRT-PCR, was
normalized to wild type. Data are means of 2 independent biological replicates, error bars are SEM. *, p#0.05 (compared with wild type by two-
sample t test). Data for swan-1 and egl-9 mutants from Figure 5A and 3 are included for comparison. D. Genes whose expression levels did not appear
intermediate in swan-1;hif-1P621G animals compared with egl-9 and swan-1 animals. Data for swan-1 and egl-9 mutants from Figure 5A and 3 are
included for comparison. E. swan-1(ok267) mutants exhibit enhanced susceptibility to S. aureus. Survival analysis: wild type MS = 65 h, N = 110/4;
swan-1 MS = 48 h, N = 108/1, p = 0.0036 (compared with wild type); egl-9 MS = 40 h, N = 87/2, p,0.0001 (compared with wild type). Results are
representative of two independent trials, performed in triplicate.
doi:10.1371/journal.ppat.1002798.g005
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EGL-9, since each pathway separately regulates each of two

distinct gene-specific activities of HIF-1 (Figure 7A). One

advantage of this pathway design may be that it allows for

integration of multiple signal inputs that regulate the balance of

HIF activation and repression activity and, thus, host response

specificity, in a context-specific manner (Figure 7A). For example,

it could allow de-repression of host defense genes downstream of

pathogen detection (by the noncanonical branch), while in-

tegrating information about oxygen concentration (by the

canonical branch), which may be important in the natural setting

of C. elegans-microbe interactions. The putative signals that

modulate the noncanonical branch are not yet known.

In contrast to our findings, upregulation of HIF-1 in vhl-1 and

egl-9 mutants was previously shown to confer resistance to B.

thuringiensis and V. cholerae pore-forming toxins [22]. Mutation of

egl-9 also confers enhanced resistance to P. aeruginosa PAO1

cyanide-mediated killing and enteropathogenic E. coli (EPEC)

toxin-mediated killing [18,31,32]. Additionally, egl-9 mutations

caused enhanced resistance to P. aeruginosa PA14 ‘‘slow killing’’

[22,33]. Consistently, we observed constitutive upregulation of

seven out of ten markers of the P. aeruginosa-triggered host response

[34] in egl-9 mutants (Figure S7). In contrast, in a model for

Burkholderia pseudomallei pathogenesis egl-9 mutation did not confer

protection [35]. Therefore, the biological functions of EGL-9 vary

depending on the nature of the infection, supporting the view that

EGL-9/HIF-1 pathways can bias the host response to infection,

with different biological effects in different infection scenarios.

In mouse models of inflammation, activation of HIF-1 has

different effects depending on the tissue. In myeloid cells, HIF-1 is

activated by NF-kB and enhances pro-inflammatory and antimi-

crobial responses [21,36–39]. In the intestinal epithelium, the role

of HIF-1 is less understood. In a recent study, overexpression of

HIF-1 protected against colonic inflammation caused by trini-

trobenzene sulfonic acid (TNBS) [40]. Additionally, chemical or

genetic ablation of EGL-9 homolog PHD1 in intestinal epithelial

cells diminished colitis caused by other toxins that disrupt the

barrier, such as dextran sodium sulphate (DSS) and Clostridium

difficile TcdbA and TcdB, suggesting that inhibition of PHD1

causes repression of the inflammatory response [23,24]. These

results mirror our findings in C. elegans, where deletion of egl-9

caused repression of a set of host response genes.

In contrast to the repressive effect of PHD deletion, conditional

deletion of VHL in the intestinal epithelial cells led to

a hyperactive host response, measured as chronic intestinal

inflammation and increased susceptibility to DSS; this effect was

mediated by HIF1 paralog HIF2 [41]. These results mirror our

observations with C. elegans vhl-1 mutants, which also exhibit

Figure 6. Repression of HIF-1-repressed host defense genes
causes enhanced susceptibility to S. aureus. A. Non-hierarchical
cluster analysis of egl-9-induced gene expression changes in infected
hif-1(ia4), swan-1(ok267), swan-1(ok267);[hif-1P621G] egl-9(sa307), vhl-
1(ok161), hif-1(ia4);[hif-1P621G], and hif-1;[hif-1] animals normalized to
wild type. B. Non-hierarchical cluster analysis of egl-9-repressed gene
expression changes in infected hif-1(ia4), swan-1(ok267), swan-
1(ok267);[hif-1P621G] egl-9(sa307), vhl-1(ok161), hif-1(ia4);[hif-1P621G], and
hif-1;[hif-1] animals normalized to wild type. Blue indicates down-
regulation, red indicates upregulation. Color intensity reflects magni-
tude of change; darker colors correspond to larger changes. C.
Enhanced-RNAi mutant eri-1(mg366) animals were subjected to feeding
RNAi from hatching to L4 stage, and subsequently transferred to S.
aureus pathogenesis assays. Vector, empty L4440 RNAi plasmid. Survival
analysis: vector MS = 75 h, N = 83/12; ilys-3, Y65B4BR.1, lys-5 RNAi
MS = 48 h, N = 93/9, p = 0.0001 (compared with vector control). Results
are representative of two independent trials, performed in triplicate.
doi:10.1371/journal.ppat.1002798.g006
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constitutive induction of host response genes in the intestinal

epithelium, a worm equivalent of chronic molecular inflamma-

tion. Thus, the opposing functions of HIF in intestinal gene

expression appear to be evolutionarily conserved.

Because of its conserved roles in host defense and inflammation,

HIF modulation may be a useful therapeutic approach. Anti-

inflammatory therapies are currently under development, which

seek to inhibit PHDs to drive HIF upregulation [42]. However,

our observations and the cited examples sound a cautionary note

against wholesale activation or inhibition of HIF-1, as this may

result in beneficial or detrimental effects on host intestinal

homeostasis depending on the physiological context. In certain

instances, such as C. difficile-triggered inflammation [24], HIF

augmentation may result in beneficial inhibition of damage. In

other infections, HIF-1 augmentation may prevent a beneficial

host response, as illustrated by the present studies. Further

work is required to elucidate the precise mechanisms by

which HIF attenuates inflammation and the clinical scenarios

where pharmacologic manipulation of HIF may have beneficial

effects.

Figure 7. Working model for HIF-1-mediated inflammatory regulation. A. Proposed model of noncanonical HIF-1 inhibition lifting HIF-1-
mediated repression of host defense genes. Infection by S. aureus causes induction of host defense genes. Some of these genes are also induced by
HIF, while others are repressed by HIF. Genes induced by HIF include genes that mediate resistance to pore-forming toxins (PFT) and P. aeruginosa.
Genes that are repressed by HIF include genes that mediate resistance to S. aureus. Canonical HIF regulation mediated by VHL-1 requires EGL-9
catalytic activity and controls the gene-inductive activity of HIF. O2 is a signal driving HIF inhibition by the canonical pathway. Noncanonical HIF
regulation, which is independent of EGL-9 catalytic activity but requires SWAN-1, controls the gene-repressive activity of HIF. The signal(s) that
regulate noncanonical signaling are currently not known. B. Diagram of predicted and observed phenotypes in mutants defective in canonical or
noncanonical HIF signaling.
doi:10.1371/journal.ppat.1002798.g007
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On the basis of the accumulated evidence, we propose that

mammalian and nematode HIF may have important roles as

repressors of the host response in intestinal epithelial cells, and that

noncanonical signaling may be a specific mechanism of control of

HIF-mediated gene repression. Although mounting evidence sup-

ports a role for HIF as a repressor of gene expression in nematodes

and mammals [29,43–49], little is known about the physiological

consequences of this repression in the context of intestinal host-

microbiota interactions. In humans, HIF-1 accumulates during

a wide range of infections [20] as well as chronic intestinal

inflammation [50]. Additionally, DDB1- and CUL4-associated factor

7 (DCAF7), the human homolog of SWAN-1, is differentially

regulated in the intestinal epithelium and in blood from patients

suffering from Crohn’s disease or ulcerative colitis, two forms of

inflammatory bowel disease [51–57]. Thus, HIF signaling compo-

nents are likely to be expressed at infection sites, and it is tempting to

speculate that noncanonical HIF-1 signaling may be functionally

relevant in intestinal inflammation in humans, as in C. elegans.

Materials and Methods

Strains
C. elegans was grown on nematode-growth media (NGM) plates

seeded with E. coli OP50-1 at 15–20uC according to standard

procedures [58]. C. elegans strains used in this study are detailed in

Table S1a. Bacterial strains are detailed in Table S1b.

Infection assays
S. aureus killing assays. Assays were performed as described [12].

Briefly, NCTC8325 was grown overnight in tryptic soy broth

(TSB, BD, Sparks, MD) with 10 mg/ml nalidixic acid (Sigma).

10 ml of overnight cultures were seeded on 35 mm tryptic soy agar

(TSA, BD, Sparks, MD) plates with 10 mg/ml nalidixic acid. To

sterilize worms before use in killing assays, so that strains with

potential differences in fertility or egg-laying behavior could be

directly compared, cdc-25.1 RNAi was carried out by feeding L4

animals for 24 h at 15uC. Animals that exhibit an Emb phenotype

[59] were selected for further analysis. A total of 25–35 late-L4

stage hermaphrodites were transferred to each of three replicate

plates per strain. Animals that died because of a bursting vulva or

crawled off the agar were censored. Experiments were performed

at least twice. All infection assays were conducted at 25uC, 70%

relative humidity. Animals were scored as alive or dead by gentle

prodding with a platinum wire. Kaplan-Meier statistical analyses

were performed using Prism 5 software (GraphPad). Survival data

were compared as described using the log-rank test. Data are

represented as median survival (MS), as defined by Kaplan-Meier

analysis, or Time to 50% Death – 50 (LT50), as defined by

nonlinear regression, when MS values were skewed by having

a small number of timepoints, N (total number of animals/

censored), and p value. A p-value,0.05 was considered signif-

icantly different from control.

Quantitative RT-PCR (qRT-PCR) analysis
Animals were treated essentially as described for killing assays

described above, with the following modifications. For S. aureus

infection assays, infected samples were compared with parallel

samples feeding on E. coli OP50, heat-killed by 30 min incubation

at 95uC, plated on the same TSA medium. Total RNA was

extracted using TRI Reagent (MRC), and reverse transcribed

using the Superscript III kit (Invitrogen). cDNA was subjected to

qRT-PCR analysis using SYBR green detection (Bio-Rad) on an

iCycler machine (Eppendorf). Primers for qRT-PCR were usually

designed to span an intron, using the Primer-BLAST tool of the

National Center for Biotechnology Information of the National

Institutes of Health (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/) and checked for specificity against the C. elegans genome. All

values are normalized against the control gene snb-1, which did

not vary under conditions being tested. Fold change was calculated

using the Pfaffl method [60]. Primer sequences are available upon

request. Two-sample, two-tailed t test statistical analyses were

performed to evaluate differences among pooled DCt values

according to Pfaffl [60] and using Numbers (Apple). A P

value#0.05 was considered significant.

RNAi knockdown
Triple RNAi. Enhanced RNAi eri-1(mg366) mutants were

propagated at 15uC. RNAi of selected genes was carried out in

triplicate using bacterial feeding RNAi [61]. Gravid adults were

transferred to RNAi plates containing dsRNA-expressing HT115

against lys-5, ilys-3, and Y65B4BR.1 at a ratio of 1:1:1, incubated at

15uC for 48 h and then 25uC for 24 h to induce sterility in the

progeny, and then transferred to NCTC8325-seeded killing assay

plates. RNAi clones were obtained from the Ahringer library and

sequences were confirmed [61].

Epifluorescence microscopy
Animals were mounted on glass slides with 2% agarose pads,

anesthetized with 30 mM NaN3, and immediately used for imaging.

Exposure times were set for the most highly expressed condition and

kept constant throughout each experiment. Images were acquired

using a Zeiss AXIO Imager Z1 microscope with a Zeiss AxioCam

HRm camera and Axiovision 4.6 (Zeiss) software. Image cropping

and minimal manipulation were performed using Photoshop

(Adobe). Quantification of GFP signal was performed using

OpenLab (Improvision Corp.) from equally exposed micrographs,

by selecting the posterior third of the intestine and computing mean

pixel intensity for the whole area for each animal.

List of genes
WormBase ID, Public Name; WBGene00016017,

C23G10.11; WBGene00016923, C54F6.5; WBGene00015052,

clec-52; WBGene00014046, clec-60; WBGene00021582, clec-71;

WBGene00000528, clh-1; WBGene00000782, cpr-2; WBGene-

00020386, cyp-34A4; WBGene00001178, egl-9; WBGene00001366,

exc-5; WBGene00017673, F21F3.3; WBGene00018267, F41C3.1;

WBGene00018731, F53A9.8; WBGene00001477, fmo-2; WBGene-

00001851, hif-1; WBGene00016670, ilys-3; WBGene00002094,

ins-11; WBGene00003094, lys-5; WBGene00009977, swan-1;

WBGene00006611, tre-5; WBGene00006922, vhl-1; WBGene-

00022040, Y65B4BR.1

Supporting Information

Figure S1 Tissue-specific expression of egl-9. A. CX8628

(egl-9 mutant expressing neuronal promoter-egl-9), CX8756 (egl-9

mutant expressing egl-9 promoter-egl-9), B. CX9778 (egl-9 mutant

expressing epidermal promoter-egl-9), and CX8630 (egl-9 mutant

expressing muscle promoter-egl-9) animals are hypersusceptible to

S. aureus, indicating that the transgenes were unable to rescue the

survival defect in the egl-9(sa307) background, despite being

functional for behavioral and egg-laying rescues [1]. This may

imply that the egl-9 promoter used in the rescuing construct lacks

regulatory sequences that are essential for rescue of the immunity

defect. Accordingly, we observed little GFP expression in the

intestine for this construct (not shown). Results are representative

of two independent trials, performed in triplicate. N$100.

(TIF)
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Figure S2 hif-1 is dispensable for induction of the C.
elegans host response to S. aureus. A. hif-1(ia4) and wild

type animals were fed E. coli or infected with S. aureus for 8 h and

gene expression was measured by qRT-PCR. Some genes were

slightly upregulated (hif-1-repressed genes) and lys-5 was down-

regulated in uninfected hif-1(-) animals. Values were normalized to

wild type animals. *, p#0.05 (compared with wild type by two-

sample t test). B. Marker gene induction in hif-1(ia4) animals

compared with wild type. Values are normalized to uninfected

controls of each genotype. n.s., not significant. C. egl-9 and hif-1

were slightly induced in wild type animals by 8 h infection with S.

aureus. Data are means of 2–3 independent biological replicates,

error bars are SEM. *, p#0.05 (compared with wild type by two-

sample t test).

(TIF)

Figure S3 egl-9, vhl-1 mutants exhibit increased clec-
60::GFP expression in the intestinal epithelium. GFP

signal was quantified from micrographs at equal exposures,

selecting the posterior third of the intestine and computing mean

pixel intensity in the selected area and expressed in arbitrary units

(a.u.). Horizontal bars represent the population median. *, p,0.05

(compared with wild type by Kruskal-Wallis test with Dunn’s

multiple comparison post hoc test).

(TIF)

Figure S4 egl-9(sa307) mutants ectopically express
Pclec-60::gfp in the excretory cell. Expression was very low

compared to the intestine and not sufficient to account for clec-60

increased expression in egl-9 mutants by qRT-PCR.

(TIF)

Figure S5 Gene expression measured by qRT-PCR in
uninfected swan-1(ok267), swan-1; [hif-1P621G], and egl-
9(sa307) mutants, normalized to wild type. egl-9(sa307)

data from Figure 3G, 3H and 3I are included for comparison.

Data are means of 2–3 independent biological replicates, error

bars are SEM.

(TIF)

Figure S6 egl-9, swan-1, and swan-1;[hif-1P621G] mutants
cluster by egl-9-induced gene expression. Non-hierarchical

cluster analysis of egl-9-repressed gene expression changes in

infected hif-1(ia4), swan-1(ok267), swan-1(ok267);[hif-1P621G], egl-

9(sa307), vhl-1(ok161), hif-1(ia4);[hif-1P621G], and hif-1;[hif-1] ani-

mals normalized to wild type, excluding Y65B4BR.1. Blue

indicates downregulation, red indicates upregulation. Color

intensity reflects magnitude of change; darker colors correspond

to larger changes.

(TIF)

Figure S7 egl-9 mutants constitutively overexpress
PA14-induced genes. Expression of ten PA14-induced genes

[2] was measured by qRT-PCR in egl-9(sa307) mutant and wild

type animals. Data are means of two independent biological

replicates, normalized to wild type. Error bars are SEM.

(TIF)

Table S1 List of strains used in this study.
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