28,622 research outputs found
VLBI observations of jupiter with the initial test station of LOFAR and the nancay decametric array
AIMS: To demonstrate and test the capability of the next generation of
low-frequency radio telescopes to perform high resolution observations across
intra-continental baselines. Jupiter's strong burst emission is used to perform
broadband full signal cross-correlations on time intervals of up to hundreds of
milliseconds. METHODS: Broadband VLBI observations at about 20 MHz on a
baseline of ~50000 wavelengths were performed to achieve arcsecond angular
resolution. LOFAR's Initial Test Station (LOFAR/ITS, The Netherlands) and the
Nancay Decametric Array (NDA, France) digitize the measured electric field with
12 bit and 14 bit in a 40 MHz baseband. The fine structure in Jupiter's signal
was used for data synchronization prior to correlation on the time-series data.
RESULTS: Strong emission from Jupiter was detected during snapshots of a few
seconds and detailed features down to microsecond time-scales were identified
in dynamic spectra. Correlations of Jupiter's burst emission returned strong
fringes on 1 ms time-scales over channels as narrow as a hundred kilohertz
bandwidth. CONCLUSIONS: Long baseline interferometry is confirmed at low
frequencies, in spite of phase shifts introduced by variations in ionospheric
propagation characteristics. Phase coherence was preserved over tens to
hundreds of milliseconds with a baseline of ~700 km. No significant variation
with time was found in the correlations and an estimate for the fringe
visibility of 1, suggested that the source was not resolved. The upper limit on
the source region size of Jupiter Io-B S-bursts corresponds to an angular
resolution of ~3 arcsec. Adding remote stations to the LOFAR network at
baselines up to thousand kilometers will provide 10 times higher resolution
down to an arcsecond.Comment: 6 pages, 4 figures. Nigl, A., Zarka, P., Kuijpers, J., Falcke, H.,
Baehren, L., VLBI observations of Jupiter with the Initial Test Station of
LOFAR and the Nancay Decametric Array, A&A, 471, 1099-1104, accepted on
31/05/200
Determination of Traffic Parameters for the Prediction, Projection, and Computation of EWL’s
One of the first published methods for the structural design of highway pavements was called the Massachusetts Rule and was presented in the eighth annual report of the Massachusetts Highway Commission in 1901 (1). The essence of this procedure was a rather intuitive assumption concerning the distribution of vertical pressures beneath a loaded area. For design purposes, this required the selection of a design load which, since failure was assumed to be catastrophic and not cumulative, could be taken as the largest load that could reasonably be anticipated during the design life of the pavement. The prediction of such a design load was in itself a rather formidable task
An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults
This paper explores the problem of reaching approximate consensus in
synchronous point-to-point networks, where each pair of nodes is able to
communicate with each other directly and reliably. We consider the mobile
Byzantine fault model proposed by Garay '94 -- in the model, an omniscient
adversary can corrupt up to nodes in each round, and at the beginning of
each round, faults may "move" in the system (i.e., different sets of nodes may
become faulty in different rounds). Recent work by Bonomi et al. '16 proposed a
simple iterative approximate consensus algorithm which requires at least
nodes. This paper proposes a novel technique of using "confession" (a mechanism
to allow others to ignore past behavior) and a variant of reliable broadcast to
improve the fault-tolerance level. In particular, we present an approximate
consensus algorithm that requires only nodes, an
improvement over the state-of-the-art algorithms.
Moreover, we also show that the proposed algorithm is optimal within a family
of round-based algorithms
Optical properties and electronic structure of MgAuSn
The optical conductivity spectrum of single-crystal MgAuSn was measured by spectroscopic ellipsometry in the energy range 1.5–5.0 eV. The spectrum has a large peak at 2.9 eV and a small shoulder around 4.3 eV. The band structure, density of states, and interband contribution to the optical conductivity were calculated with the tight-binding linear muffin-tin orbital method in the atomic-sphere approximation. The intraband contribution to the optical conductivity was added using the Drude response fitted to the experimental data. The total theoretical spectrum, including the intraband contribution, agrees well with experimental data
Dynamical and spectral properties of complex networks
Dynamical properties of complex networks are related to the spectral
properties of the Laplacian matrix that describes the pattern of connectivity
of the network. In particular we compute the synchronization time for different
types of networks and different dynamics. We show that the main dependence of
the synchronization time is on the smallest nonzero eigenvalue of the Laplacian
matrix, in contrast to other proposals in terms of the spectrum of the
adjacency matrix. Then, this topological property becomes the most relevant for
the dynamics.Comment: 14 pages, 5 figures, to be published in New Journal of Physic
Setting priorities to inform assessment of care homes’ readiness to participate in healthcare innovation: a systematic mapping review and consensus process
© 2020 The Author(s). This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedOrganisational context is known to impact on the successful implementation of healthcare initiatives in care homes. We undertook a systematic mapping review to examine whether researchers have considered organisational context when planning, conducting, and reporting the implementation of healthcare innovations in care homes. Review data were mapped against the Alberta Context Tool, which was designed to assess organizational context in care homes. The review included 56 papers. No studies involved a systematic assessment of organisational context prior to implementation, but many provided post hoc explanations of how organisational context affected the success or otherwise of the innovation. Factors identified to explain a lack of success included poor senior staff engagement, non-alignment with care home culture, limited staff capacity to engage, and low levels of participation from health professionals such as general practitioners (GPs). Thirty-five stakeholders participated in workshops to discuss findings and develop questions for assessing care home readiness to participate in innovations. Ten questions were developed to initiate conversations between innovators and care home staff to support research and implementation. This framework can help researchers initiate discussions about health-related innovation. This will begin to address the gap between implementation theory and practice.Peer reviewe
Differential Charge Sensing and Charge Delocalization in a Tunable Double Quantum Dot
We report measurements of a tunable double quantum dot, operating in the
quantum regime, with integrated local charge sensors. The spatial resolution of
the sensors is sufficient to allow the charge distribution within the double
dot system to be resolved at fixed total charge. We use this readout scheme to
investigate charge delocalization as a function of temperature and strength of
tunnel coupling, showing that local charge sensing allows an accurate
determination of interdot tunnel coupling in the absence of transport.Comment: related papers at http://marcuslab.harvard.ed
- …