1,930 research outputs found
New first trimester crown-rump length's equations optimized by structured data collection from a French general population
--- Objectives --- Prior to foetal karyotyping, the likelihood of Down's
syndrome is often determined combining maternal age, serum free beta-HCG,
PAPP-A levels and embryonic measurements of crown-rump length and nuchal
translucency for gestational ages between 11 and 13 weeks. It appeared
important to get a precise knowledge of these scan parameters' normal values
during the first trimester. This paper focused on crown-rump length. ---
METHODS --- 402 pregnancies from in-vitro fertilization allowing a precise
estimation of foetal ages (FA) were used to determine the best model that
describes crown-rump length (CRL) as a function of FA. Scan measures by a
single operator from 3846 spontaneous pregnancies representative of the general
population from Northern France were used to build a mathematical model linking
FA and CRL in a context as close as possible to normal scan screening used in
Down's syndrome likelihood determination. We modeled both CRL as a function of
FA and FA as a function of CRL. For this, we used a clear methodology and
performed regressions with heteroskedastic corrections and robust regressions.
The results were compared by cross-validation to retain the equations with the
best predictive power. We also studied the errors between observed and
predicted values. --- Results --- Data from 513 spontaneous pregnancies allowed
to model CRL as a function of age of foetal age. The best model was a
polynomial of degree 2. Datation with our equation that models spontaneous
pregnancies from a general population was in quite agreement with objective
datations obtained from 402 IVF pregnancies and thus support the validity of
our model. The most precise measure of CRL was when the SD was minimal
(1.83mm), for a CRL of 23.6 mm where our model predicted a 49.4 days of foetal
age. Our study allowed to model the SD from 30 to 90 days of foetal age and
offers the opportunity of using Zscores in the future to detect growth
abnormalities. --- Conclusion --- With powerful statistical tools we report a
good modeling of the first trimester embryonic growth in the general population
allowing a better knowledge of the date of fertilization useful in the
ultrasound screening of Down's syndrome. The optimal period to measure CRL and
predict foetal age was 49.4 days (9 weeks of gestational age). Our results open
the way to the detection of foetal growth abnormalities using CRL Zscores
throughout the first trimester
Evaluating major curriculum change:the effect on student confidence
Aim:
The aim of this study was to evaluate the effect of major curriculum change within a UK dental school on final-year student self-rated confidence levels.
Methods:
Final-year dental students graduating in each year between 2007 and 2012 completed the same course evaluation questionnaire, which assessed their confidence in relation to a range of clinical procedures using a Likert-type scale. This period spanned the introduction of a new curriculum and allowed analysis of differences in self-rated confidence between students graduating from the old (2007 and 2008) and new (2009–2012) curricula, across thirty key procedures.
Results:
New curriculum students showed significantly higher self-confidence ratings in nineteen of the thirty procedures, compared with those on the old curriculum. For the remaining eleven procedures there was no significant difference between the two curricula. The proportion of students on the outcomes-based curriculum rating themselves as 'confident” was statistically significantly higher in seven out of the thirty procedures, when compared with the traditional curriculum, and unchanged or nonsignificantly increased in the remainder.
Discussion and conclusions:
The relationship between specific curricular innovations and student confidence is considered, as is the usefulness of self-rated confidence in curriculum evaluation. Curriculum change appeared to have a positive effect on student confidence across a range of procedures
Does publication bias inflate the apparent efficacy of psychological treatment for major depressive disorder? A systematic review and meta-analysis of US national institutes of health-funded trials
Background The efficacy of antidepressant medication has been shown empirically to be overestimated due to publication bias, but this has only been inferred statistically with regard to psychological treatment for depression. We assessed directly the extent of study publication bias in trials examining the efficacy of psychological treatment for depression. Methods and Findings We identified US National Institutes of Health grants awarded to fund randomized clinical trials comparing psychological treatment to control conditions or other treatments in patients diagnosed with major depressive disorder for the period 1972–2008, and we determined whether those grants led to publications. For studies that were not published, data were requested from investigators and included in the meta-analyses. Thirteen (23.6%) of the 55 funded grants that began trials did not result in publications, and two others never started. Among comparisons to control conditions, adding unpublished studies (Hedges’ g = 0.20; CI95% -0.11~0.51; k = 6) to published studies (g = 0.52; 0.37~0.68; k = 20) reduced the psychotherapy effect size point estimate (g = 0.39; 0.08~0.70) by 25%. Moreover, these findings may overestimate the "true" effect of psychological treatment for depression as outcome reporting bias could not be examined quantitatively. Conclusion The efficacy of psychological interventions for depression has been overestimated in the published literature, just as it has been for pharmacotherapy. Both are efficacious but not to the extent that the published literature would suggest. Funding agencies and journals should archive both original protocols and raw data from treatment trials to allow the detection and correction of outcome reporting bias. Clinicians, guidelines developers, and decision makers should be aware that the published literature overestimates the effects of the predominant treatments for depression
Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation
Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Endoplasmic spreading requires coalescence of vimentin intermediate filaments at force-bearing adhesions
For cells to develop long-range forces and carry materials to the periphery, the microtubule and organelle-rich region at the center of the cell-the endoplasm-needs to extend to near the cell edge. Depletion of the actin cross-linking protein filamin A (FlnA) causes a collapse of the endoplasm into a sphere around the nucleus of fibroblasts and disruption of matrix adhesions, indicating that FlnA is involved in endoplasmic spreading and adhesion growth. Here, we report that treatment with the calpain inhibitor N-[N-(N-acetyl-l-leucyl)-l-leucyl]-l-norleucine (ALLN) restores endoplasmic spreading as well as focal adhesion (FA) growth on fibronectin-coated surfaces in a Fln-depleted background. Addback of calpain-uncleavable talin, not full-length talin, achieves a similar effect in Fln-depleted cells and indicates a crucial role for talin in endoplasmic spreading. Because FA maturation involves the vimentin intermediate filament (vIF) network, we also examined the role of vIFs in endoplasmic spreading. Wild-type cells expressing a vimentin variant incapable of polymerization exhibit deficient endoplasmic spreading as well as defects in FA growth. ALLN treatment restores FA growth despite the lack of vIFs but does not restore endoplasmic spreading, implying that vIFs are essential for endoplasm spreading. Consistent with that hypothesis, vIFs are always displaced from adhesions when the endoplasm does not spread. In Fln-depleted cells, vIFs extend beyond adhesions, nearly to the cell edge. Finally, inhibiting myosin II-mediated contraction blocks endoplasmic spreading and adhesion growth. Thus we propose a model in which myosin II-mediated forces and coalescence of vIFs at mature FAs are required for endoplasmic spreading.</p
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
The biomechanical role of periodontal ligament in bonded and replanted vertically fractured teeth under cyclic biting forces
After teeth are replanted, there are two possible healing responses: periodontal ligament healing or ankylosis with subsequent replacement resorption. The purpose of this study was to compare the fatigue resistance of vertically fractured teeth after bonding the fragments under conditions simulating both healing modes. Thirty-two human premolars were vertically fractured and the fragments were bonded together with Super-Bond C&B. They were then randomly distributed into four groups (BP, CP, CA, BA). The BP and CP groups were used to investigate the periodontal ligament healing mode whilst the BA and CA groups simulated ankylosis. All teeth had root canal treatment performed. Metal crowns were constructed for the CP and CA groups. The BP and BA groups only had composite resin restorations in the access cavities. All specimens were subjected to a 260 N load at 4 Hz until failure of the bond or until 2×106 cycles had been reached if no fracture occurred. Cracks were detected by stereomicroscope imaging and also assessed via dye penetration tests. Finally, interfaces of the resin luting agent were examined by scanning electron microscope. The results confirmed that the fatigue resistance was higher in the groups with simulated periodontal ligament healing. Periodontal reattachment showed important biomechanical role in bonded and replanted vertically fractured teeth
The G67E mutation in hMLH1 is associated with an unusual presentation of Lynch syndrome
Germline mutations in the mismatch repair (MMR) genes are associated with Lynch syndrome, also known as hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Here, we characterise a variant of hMLH1 that confers a loss-of-function MMR phenotype. The mutation changes the highly conserved Gly67 residue to a glutamate (G67E) and is reminiscent of the hMLH1-p.Gly67Arg mutation, which is present in several Lynch syndrome cohorts. hMLH1-Gly67Arg has previously been shown to confer loss-of-function (Shimodaira et al, 1998), and two functional assays suggest that the hMLH1-Gly67Glu protein fails to sustain normal MMR functions. In the first assay, hMLH1-Gly67Glu abolishes the protein's ability to interfere with MMR in yeast. In the second assay, mutation of the analogous residue in yMLH1 (yMLH1-Gly64Glu) causes a loss-of-function mutator phenotype similar to yMLH1-Gly64Arg. Despite these molecular similarities, an unusual spectrum of tumours is associated with hMLH1-Gly67Glu, which is not typical of those associated with Lynch syndrome and differs from those found in families carrying the hMLH1-Gly67Arg allele. This suggests that hMLH1 may have different functions in certain tissues and/or that additional factors may modify the influence of hMLH1 mutations in causing Lynch syndrome
Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil
Background and aimsRoot elongation is generally limited by a combination of mechanical impedance and water stress in most arable soils. However, dynamic changes of soil penetration resistance with soil water content are rarely included in models for predicting root growth. Better modelling frameworks are needed to understand root growth interactions between plant genotype, soil management, and climate. Aim of paper is to describe a new model of root elongation in relation to soil physical characteristics like penetration resistance, matric potential, and hypoxia.MethodsA new diagrammatic framework is proposed to illustrate the interaction between root elongation, soil management, and climatic conditions. The new model was written in Matlab®, using the root architecture model RootBox and a model that solves the 1D Richards equations for water flux in soil. Inputs: root architectural parameters for Soybean; soil hydraulic properties; root water uptake function in relation to matric flux potential; root elongation rate as a function of soil physical characteristics. Simulation scenarios: (a) compact soil layer at 16 to 20 cm; (b) test against a field experiment in Brazil during contrasting drought and normal rainfall seasons.Results(a) Soil compaction substantially slowed root growth into and below the compact layer. (b) Simulated root length density was very similar to field measurements, which was influenced greatly by drought. The main factor slowing root elongation in the simulations was evaluated using a stress reduction function.ConclusionThe proposed framework offers a way to explore the interaction between soil physical properties, weather and root growth. It may be applied to most root elongation models, and offers the potential to evaluate likely factors limiting root growth in different soils and tillage regimes
- …
