1,157 research outputs found

    Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell–cell approach

    Get PDF
    Aggregation of bacteria plays a key role in the formation of many biofilms. The critical first step is cell–cell approach, and yet the ability of bacteria to control the likelihood of aggregation during this primary phase is unknown. Here, we use optical tweezers to measure the force between isolated Bacillus subtilis cells during approach. As we move the bacteria towards each other, cell motility (bacterial swimming) initiates the generation of repulsive forces at bacterial separations of ~3 μm. Moreover, the motile response displays spatial sensitivity with greater cell–cell repulsion evident as inter-bacterial distances decrease. To examine the environmental influence on the inter-bacterial forces, we perform the experiment with bacteria suspended in Tryptic Soy Broth, NaCl solution and deionised water. Our experiments demonstrate that repulsive forces are strongest in systems that inhibit biofilm formation (Tryptic Soy Broth), while attractive forces are weak and rare, even in systems where biofilms develop (NaCl solution). These results reveal that bacteria are able to control the likelihood of aggregation during the approach phase through a discretely modulated motile response. Clearly, the force-generating motility we observe during approach promotes biofilm prevention, rather than biofilm formation

    β Subunit M2–M3 Loop Conformational Changes Are Uncoupled from α1 β Glycine Receptor Channel Gating: Implications for Human Hereditary Hyperekplexia

    Get PDF
    Hereditary hyperekplexia, or startle disease, is a neuromotor disorder caused mainly by mutations that either prevent the surface expression of, or modify the function of, the human heteromeric α1 β glycine receptor (GlyR) chloride channel. There is as yet no explanation as to why hyperekplexia mutations that modify channel function are almost exclusively located in the α1 to the exclusion of β subunit. The majority of these mutations are identified in the M2–M3 loop of the α1 subunit. Here we demonstrate that α1 β GlyR channel function is less sensitive to hyperekplexia-mimicking mutations introduced into the M2–M3 loop of the β than into the α1 subunit. This suggests that the M2–M3 loop of the α subunit dominates the β subunit in gating the α1 β GlyR channel. A further attempt to determine the possible mechanism underlying this phenomenon by using the voltage-clamp fluorometry technique revealed that agonist-induced conformational changes in the β subunit M2–M3 loop were uncoupled from α1 β GlyR channel gating. This is in contrast to the α subunit, where the M2–M3 loop conformational changes were shown to be directly coupled to α1 β GlyR channel gating. Finally, based on analysis of α1 β chimeric receptors, we demonstrate that the structural components responsible for this are distributed throughout the β subunit, implying that the β subunit has evolved without the functional constraint of a normal gating pathway within it. Our study provides a possible explanation of why hereditary hyperekplexia-causing mutations that modify α1 β GlyR channel function are almost exclusively located in the α1 to the exclusion of the β subunit

    Tibial Loading Increases Osteogenic Gene Expression and Cortical Bone Volume in Mature and Middle-Aged Mice

    Get PDF
    There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months). We first assessed markers of bone turnover in control (non-loaded) mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001). There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001). We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (−1300 µε endocortical; −2350 µε periosteal). Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month) mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (p = 0.001). In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV) than contralateral control tibias (p<0.05), due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages). In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2–12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice

    Socioeconomic position across the lifecourse & allostatic load: data from the West of Scotland Twenty-07 cohort study

    Get PDF
    Background: We examined how socioeconomic position (SEP) across the lifecourse (three critical periods, social mobility and accumulated over time) is associated with allostatic load (a measure of cumulative physiological burden). Methods. Data are from the West of Scotland Twenty-07 Study, with respondents aged 35 (n = 740), 55 (n = 817) and 75 (n = 483). SEP measures representing childhood, the transition to adulthood and adulthood SEP were used. Allostatic load was produced by summing nine binary biomarker scores (1 = in the highest-risk quartile). Linear regressions were used for each of the lifecourse models; with model fits compared using partial F-tests. Results: For those aged 35 and 55, higher SEP was associated with lower allostatic load (no association in the 75-year-olds). The accumulation model (more time spent with higher SEP) had the best model fit in those aged 35 (b = -0.50, 95%CI = -0.68, -0.32, P = 0.002) and 55 (b = -0.31, 95%CI = -0.49, -0.12, P < 0.001). However, the relative contributions of each life-stage differed, with adulthood SEP less strongly associated with allostatic load. Conclusions: Long-term, accumulated higher SEP has been shown to be associated with lower allostatic load (less physiological burden). However, the transition to adulthood may represent a particularly sensitive period for SEP to impact on allostatic load. © 2014 Robertson et al.; licensee BioMed Central Ltd

    Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

    Get PDF
    derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2 under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2

    Association of the transthyretin variant V122I with polyneuropathy among individuals of African ancestry

    Get PDF
    Hereditary transthyretin-mediated (hATTR) amyloidosis is an underdiagnosed, progressively debilitating disease caused by mutations in the transthyretin (TTR) gene. V122I, a common pathogenic TTR mutation, is found in 3-4% of individuals of African ancestry in the United States and has been associated with cardiomyopathy and heart failure. To better understand the phenotypic consequences of carrying V122I, we conducted a phenome-wide association study scanning 427 ICD diagnosis codes in UK Biobank participants of African ancestry (n = 6062). Significant associations were tested for replication in the Penn Medicine Biobank (n = 5737) and the Million Veteran Program (n = 82,382). V122I was significantly associated with polyneuropathy in the UK Biobank (odds ratio [OR] = 6.4, 95% confidence interval [CI] 2.6-15.6, p = 4.2 × 10-5), which was replicated in the Penn Medicine Biobank (OR = 1.6, 95% CI 1.2-2.4, p = 6.0 × 10-3) and Million Veteran Program (OR = 1.5, 95% CI 1.2-1.8, p = 1.8 × 10-4). Polyneuropathy prevalence among V122I carriers was 2.1%, 9.0%, and 4.8% in the UK Biobank, Penn Medicine Biobank, and Million Veteran Program, respectively. The cumulative incidence of common hATTR amyloidosis manifestations (carpal tunnel syndrome, polyneuropathy, cardiomyopathy, heart failure) was significantly enriched in V122I carriers compared with non-carriers (HR = 2.8, 95% CI 1.7-4.5, p = 2.6 × 10-5) in the UK Biobank, with 37.4% of V122I carriers having at least one of these manifestations by age 75. Our findings show that V122I carriers are at increased risk of polyneuropathy. These results also emphasize the underdiagnosis of disease in V122I carriers with a significant proportion of subjects showing phenotypic changes consistent with hATTR amyloidosis. Greater understanding of the manifestations associated with V122I is critical for earlier diagnosis and treatment

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Imprisonment and internment: Comparing penal facilities North and South

    Get PDF
    Recent references to the ‘warehouse prison’ in the United States and the prisión-depósito in Latin America seem to indicate that penal confinement in the western hemisphere has converged on a similar model. However, this article suggests otherwise. It contrasts penal facilities in North America and Latin America in terms of six interrelated aspects: regimentation; surveillance; isolation; supervision; accountability; and formalization. Quantitatively, control in North American penal facilities is assiduous (unceasing, persistent and intrusive), while in Latin America it is perfunctory (sporadic, indifferent and cursory). Qualitatively, North American penal facilities produce imprisonment (which enacts penal intervention through confinement), while in Latin America they produce internment (which enacts penal intervention through release). Closely entwined with this qualitative difference are distinct practices of judicial involvement in sentencing and penal supervision. Those practices, and the cultural and political factors that underpin them, represent an interesting starting point for the explanation of the contrasting nature of imprisonment and internment

    Flow cytometric determination of genome size in European sunbleak Leucaspius delineatus (Heckel, 1843)

    Get PDF
    The aim of this study was to compare DNA content in hepatocyte and erythrocyte nuclei of the European sunbleak, Leucaspius delineatus, in relation to nuclear and cell size by means of flow cytometry and fluorescence microscopy. The DNA standards, chicken and rainbow trout erythrocytes, were prepared in parallel with both cell types, with initial separation of liver cells in pepsin solution followed by cell filtering. Standards and investigated cells were stained with a mixture of propidium iodide, citric acid, and Nonidet P40 in the presence of RNAse, and fluorescence of at least 50,000 nuclei was analyzed by flow cytometry. Average cell size was determined by flow cytometry, using fresh cell suspension in relation to latex beads of known diameter. The size of nuclei was examined on the basis of digital micrographs obtained by fluorescence microscopy after nuclei staining with DAPI. The sunbleak’s erythrocyte nuclei contain 2.25 ± 0.06 pg of DNA, whereas the hepatocyte nuclei contain 2.46 ± 0.06 pg of DNA. This difference in DNA content was determined spectroscopically using isolated DNA from the two cell types. The modal diameters of the erythrocytes and hepatocytes were estimated to be 5.1 ± 0.2 and 22.3 ± 5.0 μm, respectively, and the corresponding modal dimensions of their nuclei (measured as surface area) were 15.2 and 21.4 μm2, respectively. The nucleoplasmic index, as calculated from diameters estimated from surface area of nuclear profiles, was 2.51 for the erythrocytes compared with 0.08 for hepatocytes
    corecore