14 research outputs found

    Summit of the N=40 Island of Inversion: precision mass measurements and ab initio calculations of neutron-rich chromium isotopes

    Full text link
    Mass measurements continue to provide invaluable information for elucidating nuclear structure and scenarios of astrophysical interest. The transition region between the Z=20Z = 20 and 2828 proton shell closures is particularly interesting due to the onset and evolution of nuclear deformation as nuclei become more neutron rich. This provides a critical testing ground for emerging ab-initio nuclear structure models. Here, we present high-precision mass measurements of neutron-rich chromium isotopes using the sensitive electrostatic Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS) at TRIUMF's Ion Trap for Atomic and Nuclear Science (TITAN) facility. Our high-precision mass measurements of 59,61−63^{59, 61-63}Cr confirm previous results, and the improved precision in measurements of 64−65^{64-65}Cr refine the mass surface beyond N=40. With the ab initio in-medium similarity renormalization group, we examine the trends in collectivity in chromium isotopes and give a complete picture of the N=40 island of inversion from calcium to nickel.Comment: 12 pages, 7 figure

    Mass measurements of 60–63Ga reduce x-ray burst model uncertainties and extend the evaluated T=1 isobaric multiplet mass equation

    Get PDF
    We report precision mass measurements of neutron-deficient gallium isotopes approaching the proton drip line. The measurements of Ga60–63 performed with the TITAN multiple-reflection time-of-flight mass spectrometer provide a more than threefold improvement over the current literature mass uncertainty of Ga61 and mark the first direct mass measurement of Ga60. The improved precision of the Ga61 mass has important implications for the astrophysical rp process, as it constrains essential reaction Q values near the Zn60 waiting point. Based on calculations with a one-zone model, we demonstrate the impact of the improved mass data on prediction uncertainties of x-ray burst models. The first-time measurement of the Ga60 ground-state mass establishes the proton-bound nature of this nuclide, thus constraining the location of the proton drip line along this isotopic chain. Including the measured mass of Ga60 further enables us to extend the evaluated T=1 isobaric multiplet mass equation up to A=60

    Mapping the N=40 island of inversion: Precision mass measurements of neutron-rich Fe isotopes

    Get PDF
    International audienceNuclear properties across the chart of nuclides are key to improving and validating our understanding of the strong interaction in nuclear physics. We present high-precision mass measurements of neutron-rich Fe isotopes performed at the TITAN facility. The multiple-reflection time-of-flight mass spectrometer (MR-ToF-MS), achieving a resolving power greater than 600000 for the first time, enabled the measurement of Fe63–70, including first-time high-precision direct measurements (δm/m≈10−7) of Fe68–70, as well as the discovery of a long-lived isomeric state in Fe69. These measurements are accompanied by both mean-field and ab initio calculations using the most recent realizations which enable theoretical assignment of the spin-parities of the Fe69 ground and isomeric states. Together with mean-field calculations of quadrupole deformation parameters for the Fe isotope chain, these results benchmark a maximum of deformation in the N=40 island of inversion in Fe and shed light on trends in level densities indicated in the newly refined mass surface

    Mass Measurements of Neutron-Deficient Yb Isotopes and Nuclear Structure at the Extreme Proton-Rich Side of the N=82 Shell

    Get PDF
    International audienceHigh-accuracy mass measurements of neutron-deficient Yb isotopes have been performed at TRIUMF using TITAN’s multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). For the first time, an MR-TOF-MS was used on line simultaneously as an isobar separator and as a mass spectrometer, extending the measurements to two isotopes further away from stability than otherwise possible. The ground state masses of Yb150,153 and the excitation energy of Ybm151 were measured for the first time. As a result, the persistence of the N=82 shell with almost unmodified shell gap energies is established up to the proton drip line. Furthermore, the puzzling systematics of the h11/2-excited isomeric states of the N=81 isotones are unraveled using state-of-the-art mean field calculation
    corecore