127 research outputs found

    NFAT regulates the expression of AIF-1 and IRT-1: Yin and yang splice variants of neointima formation and atherosclerosis.

    Get PDF
    Aims Alternative transcription and splicing of the allograft inflammatory factor-1 (AIF-1) gene results in the expression of two different proteins: AIF-1 and interferon responsive transcript-1 (IRT-1). Here we explore the impact of AIF-1 and IRT-1 on vascular smooth muscle cell (VSMC) activation and neointima formation, the mechanisms underlying their alternative splicing, and associations of AIF-1 and IRT-1 mRNA with parameters defining human atherosclerotic plaque phenotype.Methods and results Translation of AIF-1 and IRT-1 results in different products with contrasting cellular distribution and functions. Overexpression of AIF-1 stimulates migration and proliferation of human VSMCs, whereas IRT-1 exerts opposite effects. Adenoviral infection of angioplasty-injured rat carotid arteries with AdAIF-1 exacerbates intima hyperplasia, whereas infection with AdIRT-1 reduces neointima. Expression of these variants is modulated by changes in nuclear factor of activated T-cells (NFAT) activity. Pharmacological inhibition of NFAT or targeting of NFATc3 with siRNA lowers the AIF-1/IRT-1 ratio and favors an anti-proliferative outcome. NFAT acts as a repressor on the IRT-1 transcriptional start site, which is also sensitive to interferon-Îł stimulation. Expression of AIF-1 mRNA in human carotid plaques associates with less extracellular matrix and a more pro-inflammatory plaque and plasma profile, features that may predispose to plaque rupture. In contrast, expression of IRT-1 mRNA associates with a less aggressive phenotype and less VSMCs at the most stenotic region of the plaque.Conclusions Inhibition of NFAT signaling, by shifting the AIF-1/IRT-1 ratio, may be an attractive target to regulate the VSMC response to injury and manipulate plaque stability in atherosclerosis

    Changing outcomes following pelvic exenteration for locally advanced and recurrent rectal cancer

    Get PDF
    Background Pelvic exenteration for locally advanced rectal cancer (LARC) and locally recurrent rectal cancer (LRRC) is technically challenging but increasingly performed in specialist centres. The aim of this study was to compare outcomes of exenteration over time. Methods This was a multicentre retrospective study of patients who underwent exenteration for LARC and LRRC between 2004 and 2015. Surgical outcomes, including rate of bone resection, flap reconstruction, margin status and transfusion rates, were examined. Outcomes between higher- and lower-volume centres were also evaluated. Results Some 2472 patients underwent pelvic exenteration for LARC and LRRC across 26 institutions. For LARC, rates of bone resection or flap reconstruction increased from 2004 to 2015, from 3.5 to 12.8 per cent, and from 12.0 to 29.4 per cent respectively. Fewer units of intraoperative blood were transfused over this interval (median 4 to 2 units; P = 0.040). Subgroup analysis showed that bone resection and flap reconstruction rates increased in lower- and higher-volume centres. R0 resection rates significantly increased in low-volume centres but not in high-volume centres over time (low-volume: from 62.5 to 80.0 per cent, P = 0.001; high-volume: from 83.5 to 88.4 per cent, P = 0.660). For LRRC, no significant trends over time were observed for bone resection or flap reconstruction rates. The median number of units of intraoperative blood transfused decreased from 5 to 2.5 units (P < 0.001). R0 resection rates did not increase in either low-volume (from 51.7 to 60.4 per cent; P = 0.610) or higher-volume (from 48.6 to 65.5 per cent; P = 0.100) centres. No significant differences in length of hospital stay, 30-day complication, reintervention or mortality rates were observed over time. Conclusion Radical resection, bone resection and flap reconstruction rates were performed more frequently over time, while transfusion requirements decreased

    Contemporary Management of Locally Advanced and Recurrent Rectal Cancer: Views from the PelvEx Collaborative

    Get PDF
    Pelvic exenteration is a complex operation performed for locally advanced and recurrent pelvic cancers. The goal of surgery is to achieve clear margins, therefore identifying adjacent or involved organs, bone, muscle, nerves and/or vascular structures that may need resection. While these extensive resections are potentially curative, they can be associated with substantial morbidity. Recently, there has been a move to centralize care to specialized units, as this facilitates better multi-disciplinary care input. Advancements in pelvic oncology and surgical innovation have redefined the boundaries of pelvic exenterative surgery. Combined with improved neoadjuvant therapies, advances in diagnostics, and better reconstructive techniques have provided quicker recovery and better quality of life outcomes, with improved survival This article provides highlights of the current management of advanced pelvic cancers in terms of surgical strategy and potential future developments

    Induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as neoadjuvant treatment for locally recurrent rectal cancer: study protocol of a multicentre, open-label, parallel-arms, randomized controlled study (PelvEx II)

    Get PDF
    Background A resection with clear margins (R0 resection) is the most important prognostic factor in patients with locally recurrent rectal cancer (LRRC). However, this is achieved in only 60 per cent of patients. The aim of this study is to investigate whether the addition of induction chemotherapy to neoadjuvant chemo(re)irradiation improves the R0 resection rate in LRRC. Methods This multicentre, international, open-label, phase III, parallel-arms study will enrol 364 patients with resectable LRRC after previous partial or total mesorectal resection without synchronous distant metastases or recent chemo- and/or radiotherapy treatment. Patients will be randomized to receive either induction chemotherapy (three 3-week cycles of CAPOX (capecitabine, oxaliplatin), four 2-week cycles of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) or FOLFORI (5-fluorouracil, leucovorin, irinotecan)) followed by neoadjuvant chemoradiotherapy and surgery (experimental arm) or neoadjuvant chemoradiotherapy and surgery alone (control arm). Tumours will be restaged using MRI and, in the experimental arm, a further cycle of CAPOX or two cycles of FOLFOX/FOLFIRI will be administered before chemoradiotherapy in case of stable or responsive disease. The radiotherapy dose will be 25 × 2.0 Gy or 28 × 1.8 Gy in radiotherapy-naive patients, and 15 × 2.0 Gy in previously irradiated patients. The concomitant chemotherapy agent will be capecitabine administered twice daily at a dose of 825 mg/m2 on radiotherapy days. The primary endpoint of the study is the R0 resection rate. Secondary endpoints are long-term oncological outcomes, radiological and pathological response, toxicity, postoperative complications, costs, and quality of life. Discussion This trial protocol describes the PelvEx II study. PelvEx II, designed as a multicentre, open-label, phase III, parallel-arms study, is the first randomized study to compare induction chemotherapy followed by neoadjuvant chemo(re)irradiation and surgery with neoadjuvant chemo(re)irradiation and surgery alone in patients with locally recurrent rectal cancer, with the aim of improving the number of R0 resections
    • 

    corecore